Drug-target Interaction Prediction By Combining Transformer and GraphNeural Networks

计算机科学 变压器 人工智能 卷积神经网络 编码器 图形 深度学习 特征学习 人工神经网络 机器学习 循环神经网络 模式识别(心理学) 理论计算机科学 工程类 电压 电气工程 操作系统
作者
Junkai Liu,Yaoyao Lu,Shixuan Guan,Tengsheng Jiang,Yijie Ding,Qiming Fu,Zhiming Cui,Hongjie Wu
出处
期刊:Current Bioinformatics [Bentham Science]
卷期号:19 (4): 316-326 被引量:5
标识
DOI:10.2174/1574893618666230912141426
摘要

Background: The prediction of drug-target interactions (DTIs) plays an essential role in drug discovery. Recently, deep learning methods have been widely applied in DTI prediction. However, most of the existing research does not fully utilize the molecular structures of drug compounds and the sequence structures of proteins, which makes these models unable to obtain precise and effective feature representations. Methods: In this study, we propose a novel deep learning framework combining transformer and graph neural networks for predicting DTIs. Our model utilizes graph convolutional neural networks to capture the global and local structure information of drugs, and convolutional neural networks are employed to capture the sequence feature of targets. In addition, the obtained drug and protein representations are input to multi-layer transformer encoders, respectively, to integrate their features and generate final representations. Results: The experiments on benchmark datasets demonstrated that our model outperforms previous graph-based and transformer-based methods, with 1.5% and 1.8% improvement in precision and 0.2% and 1.0% improvement in recall, respectively. The results indicate that the transformer encoders effectively extract feature information of both drug compounds and proteins. Conclusion: Overall, our proposed method validates the applicability of combining graph neural networks and transformer architecture in drug discovery, and due to the attention mechanisms, it can extract deep structure feature data of drugs and proteins.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
洁净思天完成签到,获得积分10
1秒前
2秒前
2秒前
伞san发布了新的文献求助10
3秒前
Dory发布了新的文献求助10
3秒前
ldh完成签到,获得积分10
4秒前
4秒前
冯大哥完成签到,获得积分10
4秒前
沉静的元灵完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
5秒前
谢明渝完成签到,获得积分10
5秒前
Lilili发布了新的文献求助10
6秒前
Ava应助平常梦岚采纳,获得10
7秒前
爆米花应助123cvh采纳,获得10
7秒前
7秒前
黄子骐发布了新的文献求助10
7秒前
粱踏歌完成签到,获得积分20
7秒前
科研通AI6应助淡定尔曼采纳,获得10
8秒前
9秒前
9秒前
10秒前
浮游应助沉静的元灵采纳,获得10
10秒前
11秒前
Jasper应助粱踏歌采纳,获得10
11秒前
Yik发布了新的文献求助10
13秒前
冷酷太清完成签到,获得积分10
13秒前
14秒前
夜染发布了新的文献求助10
14秒前
十九完成签到,获得积分10
14秒前
DrleedsG发布了新的文献求助10
15秒前
123发布了新的文献求助10
15秒前
dadadaniu发布了新的文献求助10
15秒前
15秒前
LL完成签到,获得积分20
18秒前
18秒前
Hello应助蓝天采纳,获得10
19秒前
思源应助Deep_blue1采纳,获得10
19秒前
伞san完成签到,获得积分10
19秒前
005zxy完成签到,获得积分10
19秒前
碧蓝一德发布了新的文献求助10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5553580
求助须知:如何正确求助?哪些是违规求助? 4638120
关于积分的说明 14652281
捐赠科研通 4579970
什么是DOI,文献DOI怎么找? 2512009
邀请新用户注册赠送积分活动 1486966
关于科研通互助平台的介绍 1457791