光电二极管
遗传算法
等效电路
趋同(经济学)
算法
萃取(化学)
计算机科学
加速度
电子工程
工程类
物理
光电子学
电压
电气工程
机器学习
色谱法
经济增长
经典力学
经济
化学
作者
Tonghui Li,Xiaofeng Duan,Kai Liu,Yongqing Huang
标识
DOI:10.1016/j.mejo.2023.106017
摘要
Photodiode equivalent circuit models often involve numerous parameters, making the parameter extraction process complex. Therefore, this work presents a hybrid genetic algorithm (HGA) to extract photodiode parameters. Firstly, we deduce the calculation formula of the scattering parameters of the photodiode equivalent circuit model. Then, to address the limitations of the standard genetic algorithm (SGA) that its slow convergence and extended search times, we incorporate the elite strategy and acceleration operator, enhancing the local search ability of HGA. We compare the performance of the HGA with the other four optimization algorithms under multiple sets of measured data. Results show that HGA has better performance in parameter fitting, convergence speed, and accuracy from 10 MHz to 40 GHz, highlighting its superiority. The algorithm significantly simplifies photodiode parameter extraction, and provides a feasible solution for the parameter extraction of optoelectronic devices.
科研通智能强力驱动
Strongly Powered by AbleSci AI