清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Exploiting Atomic Control to Show When Atoms Become Molecules

量子位元 电子 旋转 Atom(片上系统) 原子物理学 量子点 原子单位 自旋态 材料科学 自旋(空气动力学) 分子物理学 物理 纳米技术 量子 凝聚态物理 量子力学 光电子学 计算机科学 热力学 嵌入式系统
作者
Ludwik Kranz,Edyta N. Osika,Serajum Monir,Yu‐Ling Hsueh,Lukas Fricke,Samuel J. Hile,Yousun Chung,J. G. Keizer,Rajib Rahman,M. Y. Simmons
出处
期刊:Advanced Functional Materials [Wiley]
卷期号:34 (8)
标识
DOI:10.1002/adfm.202307285
摘要

Abstract Precision‐placed atom qubits in silicon offer a unique means to confine electrons and control their spins with extreme accuracy, which can be leveraged to construct powerful quantum computers. To date atom qubits in silicon have been successfully realized using electrons hosted either on a single phosphorus atom or on a multi‐donor quantum dot. Here, a novel molecular regime is explored in which electrons are bound to two donor dots separated by ≈8 nm in a natural silicon substrate. The molecular state, provided by these spatially separated donors, is used to study with exquisite precision the impact of confinement potential on the electronic and spin properties of qubits. Unique spin filling measurements, performed on up to five electrons, confirm how electrons are shared between both sites of the molecule, forming hybridized molecular states. The precise atomic locations of the donor atoms in the silicon lattice are determined by combining the experimental electron spin resonance spectra and the state‐of‐the‐art atomistic modeling of multi‐electron wave‐functions in presence of realistic electric fields. The donor molecule studied in this work exhibits excellent qubit properties and addresses the impact that the confinement potential has, at the atomic scale, on the desired properties of electron spin qubits.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
芜湖芜湖芜湖完成签到,获得积分10
10秒前
鲤鱼完成签到,获得积分10
32秒前
小二郎应助鲤鱼采纳,获得10
38秒前
爱静静应助科研通管家采纳,获得10
45秒前
爱静静应助科研通管家采纳,获得10
45秒前
爱静静应助科研通管家采纳,获得10
45秒前
51秒前
57秒前
香蕉觅云应助ziyue采纳,获得10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
bkagyin应助米米采纳,获得10
2分钟前
开放如天完成签到 ,获得积分10
2分钟前
2分钟前
米米发布了新的文献求助10
2分钟前
科研通AI6应助PPD采纳,获得10
2分钟前
2分钟前
爱静静应助科研通管家采纳,获得30
2分钟前
爱静静应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
爱静静应助科研通管家采纳,获得10
2分钟前
今后应助米米采纳,获得10
2分钟前
PPD关注了科研通微信公众号
2分钟前
juan完成签到 ,获得积分10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
3分钟前
3分钟前
米米发布了新的文献求助10
4分钟前
无花果应助米米采纳,获得10
4分钟前
4分钟前
PPD发布了新的文献求助10
4分钟前
传奇3应助ziyue采纳,获得10
4分钟前
PPD完成签到,获得积分20
4分钟前
yyy2025发布了新的文献求助10
4分钟前
爱静静应助科研通管家采纳,获得10
4分钟前
爱静静应助科研通管家采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
爱静静应助科研通管家采纳,获得10
4分钟前
爱静静应助科研通管家采纳,获得10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Voyage au bout de la révolution: de Pékin à Sochaux 700
血液中补体及巨噬细胞对大肠杆菌噬菌体PNJ1809-09活性的影响 500
Methodology for the Human Sciences 500
First Farmers: The Origins of Agricultural Societies, 2nd Edition 500
Simulation of High-NA EUV Lithography 400
Metals, Minerals, and Society 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4317173
求助须知:如何正确求助?哪些是违规求助? 3835459
关于积分的说明 11995039
捐赠科研通 3475754
什么是DOI,文献DOI怎么找? 1906490
邀请新用户注册赠送积分活动 952489
科研通“疑难数据库(出版商)”最低求助积分说明 853917