Property Prediction and Structural Feature Extraction of Polyimide Materials Based on Machine Learning

聚酰亚胺 材料科学 玻璃化转变 均方误差 波长 生物系统 相关系数 人工智能 计算机科学 复合材料 机器学习 数学 聚合物 光电子学 统计 图层(电子) 生物
作者
Han Zhang,Haoyuan Li,Hanshen Xin,Jianhua Zhang
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:63 (17): 5473-5483 被引量:7
标识
DOI:10.1021/acs.jcim.3c00326
摘要

The construction of material prediction models using machine learning algorithms can aid in the polyimide structural design and screening of materials as well as accelerate the development of new materials. There is a lack of research on predicting the optical properties of polyimide materials and the interpretation of the structural features. Here, we collected 652 polyimide molecular structures and used seven popular machine learning algorithms to predict the glass transition temperature and cut-off wavelength of polyimide materials and extract key feature information of repeating unit structures. The results showed that the root mean square error of the glass transition temperature prediction model was 33.92 °C, and the correlation coefficient was 0.861. The root mean square error of the cut-off wavelength prediction model was 17.18 nm, and the correlation coefficient was 0.837. The elasticity of the molecular structure was also found to be the key factor affecting glass transition temperature, and the presence and location of heterogeneous atoms had a significant effect on the cut-off wavelengths. Finally, eight polyimide materials were synthesized to test the accuracy of the prediction models, and the experimental characterization values agreed with the predicted values. The results would contribute to the development of polyimide structural design and materials preparation for flexible display.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
亦74发布了新的文献求助10
1秒前
xchqb发布了新的文献求助10
1秒前
天天好心覃完成签到 ,获得积分10
2秒前
maoxiaogou完成签到,获得积分10
2秒前
wei发布了新的文献求助10
4秒前
Xiang完成签到,获得积分10
4秒前
端庄的孤风完成签到 ,获得积分10
5秒前
5秒前
6秒前
CCCCCL完成签到,获得积分10
6秒前
7秒前
方强完成签到 ,获得积分10
8秒前
大可完成签到 ,获得积分10
8秒前
LLL完成签到,获得积分10
8秒前
孙煜完成签到,获得积分10
8秒前
魁梧的盼望完成签到 ,获得积分10
9秒前
10秒前
充电宝应助阿虎采纳,获得10
10秒前
lhhssll完成签到 ,获得积分10
12秒前
发发发布了新的文献求助10
12秒前
北城发布了新的文献求助10
12秒前
13秒前
冰冰完成签到 ,获得积分10
14秒前
shelemi完成签到,获得积分10
15秒前
徐小锤发布了新的文献求助10
17秒前
xiaoze发布了新的文献求助10
17秒前
007完成签到,获得积分10
19秒前
君君完成签到,获得积分10
19秒前
xiaoze完成签到,获得积分10
21秒前
yubin.cao发布了新的文献求助10
24秒前
医院骑士完成签到,获得积分10
24秒前
wanci应助xchqb采纳,获得10
25秒前
北城完成签到,获得积分20
26秒前
机灵的海蓝完成签到,获得积分10
27秒前
28秒前
年轻葶完成签到,获得积分10
30秒前
汉堡包应助Dr空瓶氧气采纳,获得10
30秒前
paul52020完成签到,获得积分10
32秒前
思源应助yubin.cao采纳,获得10
33秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
The Burge and Minnechaduza Clarendonian mammalian faunas of north-central Nebraska 206
Youths Who Reason Exceptionally Well Mathematically and/or Verbally: Using the MVT:D4 Model to Develop Their Talents 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3831561
求助须知:如何正确求助?哪些是违规求助? 3373738
关于积分的说明 10481304
捐赠科研通 3093686
什么是DOI,文献DOI怎么找? 1702949
邀请新用户注册赠送积分活动 819237
科研通“疑难数据库(出版商)”最低求助积分说明 771307