Multiply robust causal inference of the restricted mean survival time difference

因果推理 统计 数学 计量经济学 推论 计算机科学 人工智能
作者
Di Shu,Sagori Mukhopadhyay,Hajime Uno,Jeffrey S. Gerber,Douglas E. Schaubel
出处
期刊:Statistical Methods in Medical Research [SAGE]
卷期号:32 (12): 2386-2404 被引量:1
标识
DOI:10.1177/09622802231211009
摘要

The hazard ratio (HR) remains the most frequently employed metric in assessing treatment effects on survival times. However, the difference in restricted mean survival time (RMST) has become a popular alternative to the HR when the proportional hazards assumption is considered untenable. Moreover, independent of the proportional hazards assumption, many comparative effectiveness studies aim to base contrasts on survival probability rather than on the hazard function. Causal effects based on RMST are often estimated via inverse probability of treatment weighting (IPTW). However, this approach generally results in biased results when the assumed propensity score model is misspecified. Motivated by the need for more robust techniques, we propose an empirical likelihood-based weighting approach that allows for specifying a set of propensity score models. The resulting estimator is consistent when the postulated model set contains a correct model; this property has been termed multiple robustness. In this report, we derive and evaluate a multiply robust estimator of the causal between-treatment difference in RMST. Simulation results confirm its robustness. Compared with the IPTW estimator from a correct model, the proposed estimator tends to be less biased and more efficient in finite samples. Additional simulations reveal biased results from a direct application of machine learning estimation of propensity scores. Finally, we apply the proposed method to evaluate the impact of intrapartum group B streptococcus antibiotic prophylaxis on the risk of childhood allergic disorders using data derived from electronic medical records from the Children’s Hospital of Philadelphia and census data from the American Community Survey.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
科研通AI6.1应助Sylar采纳,获得10
2秒前
量子星尘发布了新的文献求助10
2秒前
猪猪hero发布了新的文献求助10
2秒前
3秒前
3秒前
5秒前
5秒前
lobster发布了新的文献求助10
7秒前
dongchen完成签到,获得积分10
8秒前
花花2024完成签到 ,获得积分10
8秒前
9秒前
学术扛把子完成签到 ,获得积分10
9秒前
斯坦森发布了新的文献求助10
9秒前
董冬冬发布了新的文献求助10
9秒前
11秒前
11秒前
量子星尘发布了新的文献求助10
12秒前
量子星尘发布了新的文献求助10
13秒前
辛勤的泽洋完成签到 ,获得积分10
14秒前
14秒前
14秒前
小乔同学发布了新的文献求助10
17秒前
友好雅柏发布了新的文献求助10
17秒前
18秒前
女爰舍予完成签到 ,获得积分10
18秒前
南桥枝完成签到 ,获得积分10
19秒前
19秒前
19秒前
11完成签到,获得积分10
19秒前
宅了五百年完成签到,获得积分10
20秒前
Nik- KC完成签到,获得积分10
20秒前
SY发布了新的文献求助20
21秒前
阿飞发布了新的文献求助10
22秒前
姜月完成签到,获得积分10
22秒前
量子星尘发布了新的文献求助30
22秒前
shadow发布了新的文献求助10
25秒前
笑ige完成签到,获得积分10
27秒前
西西弗斯完成签到,获得积分0
28秒前
29秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5749404
求助须知:如何正确求助?哪些是违规求助? 5458546
关于积分的说明 15363524
捐赠科研通 4888849
什么是DOI,文献DOI怎么找? 2628731
邀请新用户注册赠送积分活动 1577009
关于科研通互助平台的介绍 1533742