(Invited) Modeling of the Bulk and Electrical Double-Layer Structures of Localized High-Concentration Electrolytes

稀释剂 溶剂化 电解质 溶剂 化学 溶解度 无机化学 二甲氧基乙烷 盐(化学) 分子 物理化学 有机化学 电极
作者
Qisheng Wu,Corey M. Efaw,Bin Li,Yue Qi
出处
期刊:Meeting abstracts 卷期号:MA2023-01 (2): 548-548
标识
DOI:10.1149/ma2023-012548mtgabs
摘要

A new class of electrolytes, localized high-concentration electrolytes (LHCE), have shown many benefits to high-capacity electrodes (lithium (Li)-metal, silicon, sodium, zinc, and potassium).[1] These electrolytes combine high-concentration electrolytes (HCE) with salt and solvent with low-viscosity diluents. The dilutes were added to increase ionic conductivity while the locally highly concentrated salt-solvent clusters will facilitate stable solid-electrolyte interphase (SEI) formation while preventing metallic-dendrite formation. For example, it was demonstrated that an LHCE based on lithium bis(fluorosulfonyl)imide (LiFSI) salt, Dimethoxyethane (DME) solvent, and tris(2,2,2-trifluoroethyl)orthoformate (TFEO) diluent (e.g., LiFSI-1.2DME-2TFEO by mol) forms inorganic-rich, monolithic SEI and shows excellent cycling performance for Li-metal batteries under practical conditions.[2] Here, the interactions among cations, anions, solvent molecules, and diluent molecules create a complex design space, making the trial-and-error empirical approach less efficient. Using density functional theory and classical molecular dynamics simulations, we reveal several important design principles: a) The dielectric constant of the pure solvent or diluent is not a good descriptor to describe the solubility of the salt in solvent and diluent. b) The single ion–solvent (diluent) binding energy is insufficient to predict the solubility, which also depends on the molecular structures and the corresponding solvation shell structure. c) The salt-solvent, salt-diluent, and diluent-solvent solubilities jointly determine the solvation structures in LHCE. For example, at certain concentrations, the Li + solvation shells contain both anions and solvent molecules with minimal participation of the diluent molecules. The local salt concentration can be even higher than its counterpart in the HCE. These simulated solvation structures in bulk electrolytes compare well with Raman spectrum and SAXS data. d) Moreover, the solvation structures are temperature-sensitive. We revealed why the local salt concentration is higher at a certain temperature by MD simulations, which is further validated through Raman deconvolution analyses. e) The SEI formation is sensitive to the electrolyte structure near a charged surface. Therefore, the electrical double-layer (EDL) structure of LHCE needs to be resolved. Here we give a statistical representation of the LHCE in the EDL and show how it differs from the bulk structure and its impact on SEI formation. Reference: [1] J. Electrochem. Soc., 2021, 168, 010522 [2] Nat. Energy 2019, 4, 796-805

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
何文艺完成签到,获得积分10
1秒前
喽喽发布了新的文献求助10
1秒前
2秒前
苗条香完成签到,获得积分10
2秒前
2秒前
wanci应助VDC采纳,获得10
3秒前
科研通AI6应助yangjoy采纳,获得10
3秒前
samal完成签到 ,获得积分10
5秒前
6秒前
6秒前
自帮助发布了新的文献求助10
6秒前
7秒前
NexusExplorer应助细心的剑成采纳,获得10
8秒前
10秒前
量子星尘发布了新的文献求助10
10秒前
istiany完成签到 ,获得积分10
10秒前
TY发布了新的文献求助10
10秒前
13秒前
ding应助Michael采纳,获得10
13秒前
15秒前
齐qqqqqqq完成签到 ,获得积分10
15秒前
15秒前
英吉利25发布了新的文献求助20
16秒前
17秒前
wanci应助自由谷梦采纳,获得10
17秒前
VDC发布了新的文献求助10
17秒前
科研通AI2S应助Epiphany采纳,获得10
18秒前
19秒前
20秒前
QQWQEQRQ发布了新的文献求助10
21秒前
22秒前
充电宝应助laola采纳,获得10
22秒前
23秒前
23秒前
23秒前
999999发布了新的文献求助10
23秒前
24秒前
钱多多完成签到,获得积分10
24秒前
LucyLi发布了新的文献求助10
25秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5626114
求助须知:如何正确求助?哪些是违规求助? 4711891
关于积分的说明 14957375
捐赠科研通 4780467
什么是DOI,文献DOI怎么找? 2554153
邀请新用户注册赠送积分活动 1515919
关于科研通互助平台的介绍 1476145