数学
独特性
乘性噪声
高斯噪声
分数阶微积分
数学分析
乘法函数
高斯分布
噪音(视频)
波动方程
应用数学
物理
量子力学
信号传递函数
数字信号处理
算法
人工智能
计算机科学
模拟信号
电气工程
图像(数学)
工程类
作者
Yajing Li,Yejuan Wang,Weihua Deng,Daxin Nie
标识
DOI:10.3934/dcdss.2022209
摘要
To model wave propagation in inhomogeneous media with frequency-dependent power-law attenuation, it is needed to use the fractional powers of symmetric coercive elliptic operators in space and the Caputo tempered fractional derivative in time. The model studied in this paper is semilinear stochastic space-time fractional wave equations driven by infinite dimensional multiplicative Gaussian noise and fractional Gaussian noise, because of the potential fluctuations of the external sources. We first give a representation of the mild solution and some stability estimates for the homogeneous problem, and then prove the existence and uniqueness of the mild solution by using fixed point theorem. Finally, the decay and regularity theory of the solution are provided.
科研通智能强力驱动
Strongly Powered by AbleSci AI