Prediction of dielectric properties of ferroelectric materials based on deep neural networks

电介质 材料科学 铁电性 微观结构 随机性 人工神经网络 陶瓷 材料性能 可靠性(半导体) 平均绝对百分比误差 计算机科学 生物系统 机器学习 热力学 复合材料 统计 光电子学 数学 物理 生物 功率(物理)
作者
Jiachen Wang,Zhiwei Cui,Xin Zhang,Jikai Zhao,Fan Li,Zhongbin Zhou,Nathan Saye Teah,Yunfei Gao,Gaochao Zhao,Yang Yang
出处
期刊:Science Progress [SAGE Publishing]
卷期号:108 (1)
标识
DOI:10.1177/00368504251320846
摘要

Ferroelectric materials have emerged as significant research hotspots within the field of materials science and engineering, primarily due to their unique electrical properties. However, the electrical characteristics of these materials are influenced by various factors, including material composition, microstructure, and preparation processes, which introduce considerable randomness and uncertainty. Traditional experimental and simulation methods are often insufficient for capturing these complex interactions, thereby hindering the prediction and optimization of material performance. This paper presents a novel approach for predicting the electrical properties of ferroelectric materials by utilizing deep neural networks (DNNs). The DNNs are trained using experimental data and serve as a proxy model to predict critical electrical properties, such as the dielectric constant and dielectric peak. The (1- x)Na 0.5 Bi 0.5 TiO 3 - xSrZrO 3 ceramics were synthesized via the solid-state reaction method, and both the phase structure and electrical properties of NBT- xSZ were measured. The experimental results indicate that the DNN model effectively captures the intricate influences of factors such as material composition, preparation processes, and microstructure on electrical properties. The discrepancy between predicted values and experimental results remains within an acceptable range. By comparing the absolute error (<5) between measured and predicted data, alongside evaluation metrics such as MAPE, SMAPE, and R², the practicality and reliability of the DNN model are substantiated. The strong performance of this model not only accelerates the development of new materials but also enhances the optimization of the performance of existing materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
希望天下0贩的0应助fishhh采纳,获得10
1秒前
cdercder应助阳光的成风采纳,获得10
2秒前
时尚丹寒完成签到 ,获得积分10
3秒前
Leo完成签到 ,获得积分10
5秒前
5秒前
6秒前
冷酷的戎完成签到 ,获得积分10
7秒前
觉悟111发布了新的文献求助10
10秒前
11秒前
KaK发布了新的文献求助10
11秒前
zhang2001关注了科研通微信公众号
12秒前
莽哥完成签到,获得积分10
13秒前
冷酷的戎发布了新的文献求助10
14秒前
善学以致用应助虚幻夜白采纳,获得10
15秒前
一顿鸡米花完成签到,获得积分10
16秒前
20秒前
21秒前
23秒前
zhang2001发布了新的文献求助10
24秒前
25秒前
简单平蓝发布了新的文献求助10
26秒前
安然发布了新的文献求助30
26秒前
调皮秋尽完成签到,获得积分10
27秒前
elous发布了新的文献求助10
27秒前
万能图书馆应助神经娃采纳,获得10
29秒前
juanjuan发布了新的文献求助10
30秒前
35秒前
35秒前
YIFEI发布了新的文献求助10
39秒前
二由完成签到 ,获得积分10
39秒前
觉悟111关注了科研通微信公众号
39秒前
wang发布了新的文献求助10
40秒前
拾寒完成签到 ,获得积分10
44秒前
隐形曼青应助科研通管家采纳,获得50
48秒前
冰魂应助科研通管家采纳,获得20
48秒前
英姑应助科研通管家采纳,获得10
48秒前
大个应助科研通管家采纳,获得30
48秒前
大模型应助科研通管家采纳,获得30
48秒前
上官若男应助科研通管家采纳,获得10
48秒前
科研通AI2S应助科研通管家采纳,获得10
48秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778404
求助须知:如何正确求助?哪些是违规求助? 3324131
关于积分的说明 10217172
捐赠科研通 3039355
什么是DOI,文献DOI怎么找? 1667977
邀请新用户注册赠送积分活动 798463
科研通“疑难数据库(出版商)”最低求助积分说明 758385