清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

FTSFN: A Two-stage Feature Transfer and Supplement Fusion Network for Infrared and Visible Image Fusion

融合 红外线的 图像融合 特征(语言学) 人工智能 阶段(地层学) 计算机视觉 特征提取 计算机科学 材料科学 模式识别(心理学) 图像(数学) 光学 物理 生物 古生物学 哲学 语言学
作者
Shuying Huang,Xiangkai Kong,Yong Yang,Weiguo Wan,Zixiang Song
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tim.2025.3527616
摘要

Infrared and visible image fusion (IVIF) aims to fuse these two modal images to generate a single image with rich textures and clear targets. Most current deep learning-based fusion methods directly fuse the features of these two modal images, without fully considering their specific attributes, which causes the fusion image to be more inclined to contain the features of a certain modality. In this paper, a two-stage feature transfer and supplement fusion network (FTSFN) is proposed for IVIF. In the first stage, a feature transfer network (FTN) is proposed to reduce the domain gap between the two modal images by transferring the modal features from one to another. Based on the constructed FTN and the input images, two networks, FTN ir and FTN vis , are pre-trained to obtain the optimized infrared and visible features. In the second stage, a feature supplement fusion network (FSFN) is built by constructing two network branches with shared weights to achieve the fusion of the optimized features. In FSFN, two feature supplement modules, the intensity-based feature supplement module (IFSM) and gradient-based feature supplement module (GFSM), are designed to complement the intensity and texture information of the two optimized features. In addition, to better train the FTNs and FTSFN, different loss functions are defined by exploiting the domain features of the source images. Extensive experiments on the widely used fusion datasets have verified the effectiveness and superiority of the proposed FTSFN in terms of subjective perception and objective evaluation. Specifically, the proposed method can obtain fused images with better contrast and saliency information compared to other methods. In addition, our method improves the mutual information (MI) metrics by 33.3%, 10.0% and 11.6% compared to the second-best comparison approach on TNO, INO, and RoadScene datasets, respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
41秒前
Arthur Zhu发布了新的文献求助10
45秒前
57秒前
田様应助Arthur Zhu采纳,获得10
1分钟前
刘丰完成签到 ,获得积分10
1分钟前
mmmxxxx完成签到,获得积分10
1分钟前
无奈的萍完成签到,获得积分10
2分钟前
2分钟前
shi123发布了新的文献求助10
2分钟前
李健的小迷弟应助shi123采纳,获得10
2分钟前
shlw完成签到,获得积分10
3分钟前
路过完成签到 ,获得积分10
3分钟前
huangzsdy完成签到,获得积分10
3分钟前
沉默的友安完成签到 ,获得积分10
3分钟前
keyan完成签到 ,获得积分10
3分钟前
5分钟前
5分钟前
上官若男应助科研通管家采纳,获得10
5分钟前
5分钟前
shi123发布了新的文献求助10
5分钟前
shi123完成签到,获得积分20
6分钟前
连安阳完成签到,获得积分10
6分钟前
广阔天地完成签到 ,获得积分10
6分钟前
习月阳完成签到,获得积分10
6分钟前
6分钟前
jasmine完成签到 ,获得积分10
7分钟前
7分钟前
LZQ完成签到,获得积分0
8分钟前
可爱茹嫣完成签到,获得积分10
8分钟前
白嫖论文完成签到 ,获得积分10
8分钟前
不秃燃的小老弟完成签到 ,获得积分10
9分钟前
科研通AI2S应助科研通管家采纳,获得10
9分钟前
杪夏二八完成签到 ,获得积分10
10分钟前
10分钟前
科研通AI5应助丸橙采纳,获得30
11分钟前
深情安青应助科研通管家采纳,获得10
11分钟前
Setlla完成签到 ,获得积分10
11分钟前
实力不允许完成签到 ,获得积分10
11分钟前
Ava应助xialuoke采纳,获得10
11分钟前
11分钟前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
The Martian climate revisited: atmosphere and environment of a desert planet 500
Plasmonics 400
建国初期十七年翻译活动的实证研究. 建国初期十七年翻译活动的实证研究 400
Towards a spatial history of contemporary art in China 400
Ecology, Socialism and the Mastery of Nature: A Reply to Reiner Grundmann 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3847806
求助须知:如何正确求助?哪些是违规求助? 3390526
关于积分的说明 10561646
捐赠科研通 3110862
什么是DOI,文献DOI怎么找? 1714585
邀请新用户注册赠送积分活动 825289
科研通“疑难数据库(出版商)”最低求助积分说明 775467