FTSFN: A Two-Stage Feature Transfer and Supplement Fusion Network for Infrared and Visible Image Fusion

融合 红外线的 图像融合 特征(语言学) 人工智能 阶段(地层学) 计算机视觉 特征提取 计算机科学 材料科学 模式识别(心理学) 图像(数学) 光学 物理 生物 哲学 古生物学 语言学
作者
Shuying Huang,Xiangkai Kong,Yong Yang,Weiguo Wan,Zixiang Song
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:74: 1-15 被引量:3
标识
DOI:10.1109/tim.2025.3527616
摘要

Infrared and visible image fusion (IVIF) aims to fuse these two modal images to generate a single image with rich textures and clear targets. Most current deep learning-based fusion methods directly fuse the features of these two modal images, without fully considering their specific attributes, which causes the fusion image to be more inclined to contain the features of a certain modality. In this paper, a two-stage feature transfer and supplement fusion network (FTSFN) is proposed for IVIF. In the first stage, a feature transfer network (FTN) is proposed to reduce the domain gap between the two modal images by transferring the modal features from one to another. Based on the constructed FTN and the input images, two networks, FTN ir and FTN vis , are pre-trained to obtain the optimized infrared and visible features. In the second stage, a feature supplement fusion network (FSFN) is built by constructing two network branches with shared weights to achieve the fusion of the optimized features. In FSFN, two feature supplement modules, the intensity-based feature supplement module (IFSM) and gradient-based feature supplement module (GFSM), are designed to complement the intensity and texture information of the two optimized features. In addition, to better train the FTNs and FTSFN, different loss functions are defined by exploiting the domain features of the source images. Extensive experiments on the widely used fusion datasets have verified the effectiveness and superiority of the proposed FTSFN in terms of subjective perception and objective evaluation. Specifically, the proposed method can obtain fused images with better contrast and saliency information compared to other methods. In addition, our method improves the mutual information (MI) metrics by 33.3%, 10.0% and 11.6% compared to the second-best comparison approach on TNO, INO, and RoadScene datasets, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
幽默柚子发布了新的文献求助20
刚刚
刚刚
现代发布了新的文献求助10
1秒前
Hoping发布了新的文献求助10
2秒前
华仔应助纪鸿采纳,获得10
2秒前
烤冷面完成签到,获得积分0
3秒前
人类之光发布了新的文献求助10
3秒前
myyyyy发布了新的文献求助10
4秒前
汕大华瑞喆完成签到,获得积分10
4秒前
哈基米德应助云槿采纳,获得20
5秒前
香蕉觅云应助坦率白竹采纳,获得10
5秒前
Moon应助科研通管家采纳,获得10
5秒前
orixero应助科研通管家采纳,获得10
5秒前
5秒前
小马甲应助科研通管家采纳,获得10
5秒前
无限师发布了新的文献求助30
5秒前
研友_VZG7GZ应助科研通管家采纳,获得10
5秒前
上官若男应助科研通管家采纳,获得10
6秒前
脑洞疼应助科研通管家采纳,获得10
6秒前
Ava应助科研通管家采纳,获得10
6秒前
lezard完成签到,获得积分10
6秒前
NexusExplorer应助科研通管家采纳,获得10
6秒前
小马甲应助科研通管家采纳,获得10
6秒前
斯文败类应助科研通管家采纳,获得10
6秒前
万能图书馆应助克林采纳,获得10
6秒前
6秒前
6秒前
6秒前
6秒前
大苏打完成签到,获得积分10
6秒前
沉静盼山发布了新的文献求助10
6秒前
小小何完成签到,获得积分10
7秒前
甜美坤完成签到 ,获得积分10
7秒前
8秒前
烦恼得得得完成签到,获得积分10
8秒前
8秒前
香蕉觅云应助lijiaqi采纳,获得10
9秒前
9秒前
轻松千山完成签到,获得积分10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Vertebrate Palaeontology, 5th Edition 500
Fiction e non fiction: storia, teorie e forme 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5327618
求助须知:如何正确求助?哪些是违规求助? 4467657
关于积分的说明 13901970
捐赠科研通 4360378
什么是DOI,文献DOI怎么找? 2395067
邀请新用户注册赠送积分活动 1388628
关于科研通互助平台的介绍 1359384