Strategic Integration of Machine Learning in the Design of Excellent Hybrid Perovskite Solar Cells

邻接矩阵 人工智能 机器学习 计算机科学 卷积神经网络 钙钛矿(结构) 深度学习 基质(化学分析) 算法 材料科学 图形 化学 理论计算机科学 结晶学 复合材料
作者
Zhaosheng Zhang,Sijia Liu,Qing Xiong,Yanbo Liu
出处
期刊:Journal of Physical Chemistry Letters [American Chemical Society]
卷期号:: 738-746 被引量:4
标识
DOI:10.1021/acs.jpclett.4c03580
摘要

The photoelectric conversion efficiency (PCE) of perovskites remains beneath the Shockley-Queisser limit, despite its significant potential for solar cell applications. The present focus is on investigating potential multicomponent perovskite candidates, particularly on the application of machine learning to expedite band gap screening. To efficiently identify high-performance perovskites, we utilized a data set of 1346 hybrid organic–inorganic perovskites and employed 11 machine learning models, including decision trees, convolutional neural networks (CNNs), and graph neural networks (GNNs). Four descriptors were utilized for high-throughput screening: sine matrix, Ewald sum matrix, atom-centered symmetry functions (ACSF), and many-body tensor representation (MBTR). The results indicated that LightGBM and CatBoost somewhat surpassed XGBoost in decision tree models, but random forests lagged. Among the CNN models utilizing the same four descriptors, CustomCNN and VGG16 surpassed Xception, while EfficientNetV2B0 exhibited the least favorable performance. When the sine matrix and Ewald sum matrix served as adjacency matrices in GNN models, GCSConv exhibited a considerable improvement over GATConv and a slight advantage over GCNConv. Significantly, GCSConv outperformed other models when utilized with the Ewald sum matrix. The ideal combination of descriptors and algorithms identified was MBTR + CustomCNN, with an R2 of 0.94. Subsequently, three perovskites exhibiting appropriate Heyd–Scuseria–Ernzerhof (HSE06) band gaps were identified to define the defects. Among them, CH3C(NH2)2SnI3 exhibited superior performance in both vacancy and substitutional defects compared to C3H8NSnI3 and (CH3)2NH2SnI3. This high-throughput screening method with machine learning establishes a robust foundation for selecting solar materials with exceptional photoelectric properties.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
潮鸣发布了新的文献求助10
刚刚
allen完成签到,获得积分10
1秒前
Excuseme完成签到,获得积分10
1秒前
彭于晏发布了新的文献求助10
2秒前
黄花发布了新的文献求助10
2秒前
2秒前
完美的鹤完成签到,获得积分10
2秒前
花开的石头完成签到,获得积分10
3秒前
jessicazhong完成签到,获得积分10
3秒前
柚屿完成签到,获得积分10
4秒前
4秒前
4秒前
4秒前
大模型应助小杨采纳,获得10
4秒前
kk发布了新的文献求助20
5秒前
5秒前
刚子完成签到,获得积分10
5秒前
尊敬的花卷完成签到 ,获得积分10
5秒前
5秒前
profchen发布了新的文献求助10
5秒前
zx发布了新的文献求助10
5秒前
舒服的初蓝完成签到,获得积分10
6秒前
wanci应助就这样采纳,获得10
6秒前
xujie发布了新的文献求助10
7秒前
纯真保温杯完成签到 ,获得积分10
8秒前
小灰熊发布了新的文献求助30
8秒前
科研通AI6应助leroan采纳,获得40
8秒前
九月完成签到,获得积分10
9秒前
乖加油发布了新的文献求助10
9秒前
清爽的梦秋完成签到,获得积分10
9秒前
Zhou完成签到,获得积分10
9秒前
9秒前
听雨落声完成签到 ,获得积分10
10秒前
huihuiwang完成签到,获得积分10
11秒前
Eman发布了新的文献求助50
11秒前
oxfocean完成签到,获得积分10
11秒前
11秒前
11秒前
沈尔云完成签到,获得积分10
12秒前
迪迦发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5080699
求助须知:如何正确求助?哪些是违规求助? 4298576
关于积分的说明 13392242
捐赠科研通 4122276
什么是DOI,文献DOI怎么找? 2257639
邀请新用户注册赠送积分活动 1261948
关于科研通互助平台的介绍 1196024