Mitigating carbon emissions through AI-driven optimization of zeolite structures: A hybrid model approach

沸石 温室气体 碳纤维 环境科学 废物管理 环境工程 计算机科学 工程类 化学 地质学 算法 复合数 催化作用 海洋学 生物化学
作者
Mohammad Arishi,Mohammed Kuku
出处
期刊:alexandria engineering journal [Elsevier]
卷期号:115: 370-389 被引量:6
标识
DOI:10.1016/j.aej.2024.12.049
摘要

The escalating hazard of weather change necessitates pressing advancements in carbon-mitigating technologies. The CO₂ capture with zeolites involves working by physical and chemical adsorption, taking advantage of the high surface area, porosity, and the crystalline structure zeolites possess. Zeolites, with their incredible adsorption properties, have emerged as promising materials for carbon capture. However, optimizing zeolite structures to maximize carbon capture efficiency is a complicated and useful resource-extensive technique. Traditional optimization techniques, at the same time effective, are regularly restricted using their computational demands and incapability to fully discover the considerable design space, leading to suboptimal answers. This study introduces a novel integrated model that mixes Genetic Algorithms (GA) with Generative Adversarial Networks (GANs) to enhance the layout and optimization of zeolite systems for carbon capture. GAN stands for generative adversarial networks, which are actual AIs that create realistic data, whereas GA resembles the process of natural selection to get the best solution. They both enhance the zeolite design in this study. The GA component successfully searches the design space by iteratively choosing and evolving promising zeolite systems, even as the GAN aspect generates new, high-capacity systems based totally on learned styles from present facts. This GA-GAN hybrid approach addresses the constraints of modern-day strategies by enabling a complete exploration of feasible zeolite configurations and improving the probability of identifying the optimal approach. Optimization of the zeolite structure is done by a blend of genetic algorithms in conjunction with Generative Adversarial Networks for improved adsorption capacity, surface area, and selectivity of CO₂ capture. The latest research report has found that the GA-GAN mix model completely outperforms classical optimization methods, a promising tool for advanced carbon capture materials development to this end. The study introduces a brand-new approach to finding the best zeolite designs by merging the characteristics of genetic algorithms and generative adversarial networks. The findings and analysis imply that it is indeed this combined model that will push the carbon capture drive in the future, thus helping global climate change.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Guofa.发布了新的文献求助10
1秒前
1秒前
Lighters完成签到 ,获得积分10
1秒前
1秒前
2秒前
元昭诩应助冷酷严青采纳,获得10
3秒前
浮游应助ldy采纳,获得10
3秒前
jiaying完成签到 ,获得积分10
4秒前
舒舒发布了新的文献求助10
5秒前
科研通AI6应助LuckyM采纳,获得10
5秒前
5秒前
宇文天思完成签到,获得积分10
6秒前
littleknees应助清脆靳采纳,获得10
6秒前
彩色冥幽发布了新的文献求助10
6秒前
Author发布了新的文献求助10
6秒前
6秒前
7秒前
adi完成签到,获得积分10
8秒前
宇文天思发布了新的文献求助10
9秒前
桐桐应助Tuotuo采纳,获得10
10秒前
10秒前
越明年完成签到,获得积分10
10秒前
Lucas应助Raymond采纳,获得10
11秒前
niNe3YUE应助森桑想科研采纳,获得10
11秒前
ChenXinde发布了新的文献求助10
12秒前
小天使海蒂完成签到 ,获得积分0
12秒前
不敢自称科研人完成签到,获得积分10
12秒前
Walker发布了新的文献求助10
13秒前
冷酷严青发布了新的文献求助10
13秒前
Taozhi发布了新的文献求助10
13秒前
13秒前
ding应助舒舒采纳,获得10
14秒前
Lucas应助Author采纳,获得10
14秒前
靴子驳回了慕青应助
14秒前
希望天下0贩的0应助XXX987采纳,获得10
16秒前
17秒前
18秒前
Box_Li发布了新的文献求助10
20秒前
Walker完成签到,获得积分10
21秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557467
求助须知:如何正确求助?哪些是违规求助? 4642491
关于积分的说明 14668341
捐赠科研通 4583911
什么是DOI,文献DOI怎么找? 2514433
邀请新用户注册赠送积分活动 1488818
关于科研通互助平台的介绍 1459439