Multi-Stage Airway Segmentation in Lung CT Based on Multi-scale Nested Residual UNet

残余物 阶段(地层学) 比例(比率) 分割 气道 功能剩余容量 计算机科学 医学 人工智能 地质学 肺容积 内科学 外科 算法 地图学 地理 古生物学
作者
Bingyu Yang,Huai Liao,Xinyan Huang,Qingyao Tian,Jinlin Wu,Jianda Hu,Hongbin Liu
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2410.18456
摘要

Accurate and complete segmentation of airways in chest CT images is essential for the quantitative assessment of lung diseases and the facilitation of pulmonary interventional procedures. Although deep learning has led to significant advancements in medical image segmentation, maintaining airway continuity remains particularly challenging. This difficulty arises primarily from the small and dispersed nature of airway structures, as well as class imbalance in CT scans. To address these challenges, we designed a Multi-scale Nested Residual U-Net (MNR-UNet), incorporating multi-scale inputs and Residual Multi-scale Modules (RMM) into a nested residual framework to enhance information flow, effectively capturing the intricate details of small airways and mitigating gradient vanishing. Building on this, we developed a three-stage segmentation pipeline to optimize the training of the MNR-UNet. The first two stages prioritize high accuracy and sensitivity, while the third stage focuses on repairing airway breakages to balance topological completeness and correctness. To further address class imbalance, we introduced a weighted Breakage-Aware Loss (wBAL) to heighten focus on challenging samples, penalizing breakages and thereby extending the length of the airway tree. Additionally, we proposed a hierarchical evaluation framework to offer more clinically meaningful analysis. Validation on both in-house and public datasets demonstrates that our approach achieves superior performance in detecting more accurate airway voxels and identifying additional branches, significantly improving airway topological completeness. The code will be released publicly following the publication of the paper.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
朴素的焦发布了新的文献求助10
6秒前
7秒前
7秒前
superming完成签到,获得积分10
7秒前
8秒前
顾末完成签到,获得积分10
9秒前
11秒前
萝卜发布了新的文献求助10
12秒前
13秒前
汉堡包应助科研通管家采纳,获得10
13秒前
科研通AI5应助科研通管家采纳,获得10
14秒前
科研通AI5应助科研通管家采纳,获得10
14秒前
传奇3应助科研通管家采纳,获得10
14秒前
14秒前
Hello应助科研通管家采纳,获得10
14秒前
三木子应助科研通管家采纳,获得10
14秒前
啊鲤完成签到,获得积分10
15秒前
15秒前
xs发布了新的文献求助10
16秒前
君子兰完成签到,获得积分10
17秒前
朴素的焦完成签到,获得积分10
19秒前
无与伦比完成签到,获得积分10
19秒前
aisanye完成签到,获得积分10
20秒前
HXY发布了新的文献求助10
20秒前
22秒前
22秒前
华仔应助999994采纳,获得10
22秒前
zho发布了新的文献求助10
23秒前
科研通AI2S应助ibigbird采纳,获得10
23秒前
科研通AI5应助vivre223采纳,获得10
23秒前
24秒前
xiaowang发布了新的文献求助10
24秒前
Alkaid发布了新的文献求助10
25秒前
26秒前
Orange应助庸俗采纳,获得10
27秒前
ZhouYW应助TAboo采纳,获得10
27秒前
酷波er应助小王采纳,获得10
29秒前
31秒前
芋泥波波发布了新的文献求助10
31秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3791065
求助须知:如何正确求助?哪些是违规求助? 3335765
关于积分的说明 10276878
捐赠科研通 3052348
什么是DOI,文献DOI怎么找? 1675100
邀请新用户注册赠送积分活动 803102
科研通“疑难数据库(出版商)”最低求助积分说明 761066