Unveiling the molecular mechanism of 1,3,2-dioxathiolane 2,2-dioxide in a propylene carbonate-based battery electrolyte

碳酸丙烯酯 电解质 电池(电) 碳酸盐 机制(生物学) 无机化学 化学 材料科学 化学工程 有机化学 物理化学 热力学 工程类 电极 物理 功率(物理) 量子力学
作者
Jaeho Lee,Kyoung-Hee Shin,Young‐Kyu Han
出处
期刊:Journal of Molecular Liquids [Elsevier BV]
卷期号:395: 123817-123817 被引量:4
标识
DOI:10.1016/j.molliq.2023.123817
摘要

Propylene carbonate (PC)-based electrolytes are gaining attention as next-generation electrolytes for use in high-voltage and high-temperature environments due to their superior stability at high voltages and their wide operating temperature range. However, commercialization is challenged by the exfoliation of the graphite anode, which is caused by the co-intercalation of PC. Various additives have been devised to address this issue. 1,3,2-dioxathiolane 2,2-dioxide (DTD) exhibits outstanding capacity retention and lifespan characteristics in lithium-ion batteries in which PC-based electrolytes are used, but a molecular-level understanding of its operating mechanism remains elusive. According to our quantum static and dynamics calculations, the Li+ binding energy of DTD is much lower than that of PC, rendering its coordination ability insufficient to compete with PC. As a result, the neutral DTD does not play a role in favoring the desolvation of PC from the solvation structure. However, DTD is reduced prior to PC and shows a strong reduction tendency accompanied by ring-opening. Based on this, DTD in its anionic form participates in the Li+ solvation sheath through a solvent–additive exchange reaction to promote the desolvation of PC. We reveal that the use of the charges of the oxygen atoms bonded to Li+ ions to interpret the Li+–solvent binding energies is inappropriate. Instead, we suggest the electrostatic potential minimum (ESPMin) as a useful and powerful descriptor. This work provides insights into the molecular characteristics and mechanisms of additives that enable PC-based electrolytes, offering guidance for the development of new additives.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助vivia采纳,获得10
1秒前
Hello应助一二采纳,获得10
3秒前
3秒前
3秒前
田様应助欢呼的冰菱采纳,获得10
4秒前
领导范儿应助cheng采纳,获得10
4秒前
沉默夏真发布了新的文献求助30
7秒前
俭朴的一曲完成签到,获得积分10
8秒前
Akin完成签到,获得积分10
8秒前
zhou123432发布了新的文献求助10
8秒前
8秒前
所所应助njupt连赛通采纳,获得10
9秒前
鱼儿完成签到,获得积分10
11秒前
12秒前
xxxx完成签到 ,获得积分10
12秒前
14秒前
HNDuan完成签到,获得积分10
14秒前
15秒前
烟花应助晨雾锁阳采纳,获得10
15秒前
鸡鱼蚝完成签到,获得积分10
16秒前
隐形曼青应助冷静水蓝采纳,获得10
16秒前
16秒前
jenningseastera应助Akin采纳,获得10
17秒前
17秒前
17秒前
LuDans发布了新的文献求助20
18秒前
瀚泛完成签到,获得积分10
19秒前
19秒前
Lucas应助科研通管家采纳,获得10
20秒前
今后应助朝朝暮暮采纳,获得10
20秒前
Thien应助科研通管家采纳,获得10
20秒前
Thien应助科研通管家采纳,获得10
20秒前
一二发布了新的文献求助10
20秒前
科研通AI5应助科研通管家采纳,获得10
20秒前
cdercder应助科研通管家采纳,获得10
20秒前
无限柠檬4519完成签到,获得积分10
20秒前
斯文败类应助科研通管家采纳,获得10
20秒前
lz应助科研通管家采纳,获得30
20秒前
CodeCraft应助科研通管家采纳,获得10
20秒前
orixero应助科研通管家采纳,获得10
20秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799006
求助须知:如何正确求助?哪些是违规求助? 3344720
关于积分的说明 10321316
捐赠科研通 3061197
什么是DOI,文献DOI怎么找? 1680067
邀请新用户注册赠送积分活动 806880
科研通“疑难数据库(出版商)”最低求助积分说明 763435