Modality Conversion Meets Super-Resolution: A Collaborative Framework for High-Resolution Thermal UAV Image Generation

计算机科学 计算机视觉 人工智能 特征(语言学) 图像分辨率 任务(项目管理) 模态(人机交互) 图像融合 图像(数学) 遥感 工程类 哲学 语言学 系统工程 地质学
作者
Zhicheng Zhao,Chun Wang,Chenglong Li,Yong Zhang,Jin Tang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-14 被引量:1
标识
DOI:10.1109/tgrs.2024.3354878
摘要

Due to the limitations and costs of thermal sensors, unmanned aerial vehicle (UAV) platforms often equip with high-resolution (HR) visible imaging and low-resolution (LR) thermal imaging cameras for all-day monitoring capability. Existing works generate the high-resolution thermal UAV images by either super-resolution (SR) from high-resolution visible and low-resolution thermal images or modality conversion (MC) from high-resolution visible images. However, the modality gap between visible and thermal sources might degrade the generation quality. We observe that the MC task is beneficial in addressing the cross-modal gap in the SR task, while the SR task can provide the condition of thermal information to boost the MC task. Moreover, these two tasks have the same output and can thus be carried out simultaneously without any additional annotation. Based on this observation, we propose a collaborative enhancement network (CENet), which performs thermal UAV image SR and visible image MC in a joint manner, for high-resolution thermal UAV image generation. In particular, we design a mutual guidance module to interact the features from SR and MC tasks in an alternating bidirectional manner. Considering that low-level vision tasks are position-sensitive, to further enhance the feature alignment between the two tasks, we design a bidirectional alignment fusion module to maintain feature consistency of the MC and SR branches. The proposed collaborative framework not only achieves joint and unified training of the two tasks, but also generates two types of complementary high-resolution images. Extensive experiments on public datasets demonstrate that the proposed CENet outperforms current state-of-the-art super-resolution (SR) methods in generating high-resolution thermal UAV images, as quantified by peak signal-to-noise ratio (PSNR) and structural similarity index measure (SSIM).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
punctuation完成签到 ,获得积分10
1秒前
顾矜应助乐观小之采纳,获得10
2秒前
远方完成签到,获得积分10
2秒前
2秒前
青山发布了新的文献求助20
2秒前
秦华华完成签到,获得积分20
2秒前
英姑应助Ade采纳,获得10
2秒前
linger发布了新的文献求助10
3秒前
小李发布了新的文献求助10
3秒前
3秒前
wcy发布了新的文献求助10
4秒前
4秒前
万能图书馆应助YOLO采纳,获得10
4秒前
喝喂辉发布了新的文献求助10
5秒前
Lucas应助shy采纳,获得10
5秒前
仔wang完成签到,获得积分10
5秒前
hahakeyan完成签到,获得积分10
5秒前
可玩性完成签到 ,获得积分10
6秒前
小蘑菇应助mysci采纳,获得10
6秒前
CY03完成签到,获得积分10
8秒前
yuyu完成签到,获得积分10
8秒前
丘比特应助shYnEss采纳,获得20
8秒前
H丶化羽发布了新的文献求助10
8秒前
kingwill应助席以亦采纳,获得20
9秒前
JJJJJin发布了新的文献求助10
9秒前
Dogged完成签到,获得积分10
9秒前
xxz完成签到,获得积分10
10秒前
joji完成签到,获得积分10
10秒前
追风舞尘完成签到,获得积分10
10秒前
胡小溪完成签到,获得积分10
11秒前
11秒前
pyj完成签到,获得积分10
11秒前
Chandler完成签到,获得积分10
11秒前
11秒前
ly完成签到 ,获得积分10
12秒前
12秒前
sukkei应助ark861023采纳,获得10
12秒前
12秒前
zx完成签到 ,获得积分10
13秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Pharmacological profile of sulodexide 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3804916
求助须知:如何正确求助?哪些是违规求助? 3350009
关于积分的说明 10346893
捐赠科研通 3065849
什么是DOI,文献DOI怎么找? 1683320
邀请新用户注册赠送积分活动 808862
科研通“疑难数据库(出版商)”最低求助积分说明 765093