Health monitoring of ultra high fiber performance reinforced concrete communication tower using machine learning algorithms

塔楼 加速度计 结构健康监测 结构工程 频域 工程类 频率响应 有限元法 算法 计算机科学 电气工程 操作系统 计算机视觉
作者
Sarah Saleem,Farzad Hejazi,Nima Ostovar
出处
期刊:Journal of Civil Structural Health Monitoring [Springer Nature]
卷期号:13 (4-5): 1105-1130 被引量:4
标识
DOI:10.1007/s13349-023-00688-3
摘要

Abstract Within the last decades, the needed for communication towers has accelerated with the requirements for effective communication, especially for radio, radar, and television. The complexity configuration of the tower and limit access to the structure body especially inner part of the tower with hollow section is led the health monitoring of tower as the main challenging issue to maintenance during its function. The change of natural frequencies can be considered as one of the prevalent damage detection methods in structural assessment procedures. Therefore, the main aim of present research is to develop health monitoring system for Ultra High Fiber Performance Reinforced Concrete (UHPFRC) communication tower based on frequency domain response. Since the frequency data of tower is mostly noisy and interpreting of frequency in different modes in variant case of tower damage. The hybrid algorithm based on the Adaboost, Bagging and RUSBoost algorithms are implemented to identify the damage in the UHPFRC communication tower using frequency domain data. The training samples for the algorithm are obtained from a finite element simulation and full-scale experiment testing is also performed to generate the testing samples. The finite element simulation dynamic frequency results are verified through conducting a full-scale experimental test on 30 m height UHPFRC communication tower. For this propose, frequency Response Functions (FRF’s), for healthy and damaged structures were obtained by exciting of tower by an impact hammer and the acceleration response recorded by three accelerometers sensors attached in suitable positions. The developed hybrid algorithm to identifying the damage is tested and verified by considering the part of tower segments 2–3 and conducting experimental testing on the healthy structure as well as a damaged structure which caused using dynamic actuator. The testing results proved the accuracy of the developed optimized hybrid algorithm to identify damage in the tower structure in variant condition.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮光发布了新的文献求助10
刚刚
科研通AI6应助花不语采纳,获得10
1秒前
3秒前
chenhaohan完成签到,获得积分20
3秒前
czm33发布了新的文献求助10
5秒前
Owen应助微笑语山采纳,获得10
7秒前
8秒前
南川完成签到,获得积分10
8秒前
爱你哦发布了新的文献求助10
8秒前
玖玖完成签到,获得积分10
8秒前
sschen完成签到,获得积分10
9秒前
刘威远完成签到,获得积分20
9秒前
xiaoma发布了新的文献求助10
10秒前
fff完成签到,获得积分10
10秒前
小于要毕业完成签到,获得积分10
11秒前
12秒前
科研通AI6应助顾远采纳,获得10
14秒前
15秒前
量子星尘发布了新的文献求助10
16秒前
niNe3YUE应助爱你哦采纳,获得10
16秒前
16秒前
17秒前
17秒前
20秒前
20秒前
认真代曼发布了新的文献求助10
20秒前
香香香发布了新的文献求助10
23秒前
23秒前
君泽发布了新的文献求助10
24秒前
Sega发布了新的文献求助10
25秒前
赘婿应助梦醒了采纳,获得10
26秒前
归去来兮发布了新的文献求助10
26秒前
28秒前
29秒前
陈静完成签到,获得积分10
30秒前
xiaoma发布了新的文献求助10
31秒前
32秒前
华仔应助季小艾采纳,获得10
32秒前
毛头侠发布了新的文献求助10
33秒前
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5553201
求助须知:如何正确求助?哪些是违规求助? 4637738
关于积分的说明 14650872
捐赠科研通 4579617
什么是DOI,文献DOI怎么找? 2511731
邀请新用户注册赠送积分活动 1486663
关于科研通互助平台的介绍 1457653