亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Process modelling integrated with interpretable machine learning for predicting hydrogen and char yield during chemical looping gasification

烧焦 工艺工程 生物量(生态学) 产量(工程) 化学 化学工程 热解 环境科学 工程类 热力学 物理 海洋学 地质学
作者
Arnold E. Sison,Sydney A. Etchieson,Fatih Güleç,Emmanuel I. Epelle,Jude A. Okolie
出处
期刊:Journal of Cleaner Production [Elsevier BV]
卷期号:414: 137579-137579 被引量:17
标识
DOI:10.1016/j.jclepro.2023.137579
摘要

Chemical looping gasification (CLG) is a promising thermochemical process for the production of H2. CLG process is mainly based on oxygen transfer from an air reactor to a gasification reactor using solid metal oxides (also called oxygen carriers, (OC)) as oxidants. The unique oxygen separation system of CLG makes it an advanced process with a smaller carbon footprint compared to the conventional gasification process. The other advantages of CLG includes increased efficiency, reduced greenhouse gas emissions, and improved process stability compared to conventional biomass gasification. Although CLG is a promising technology, it still faces several challenges such as high capital cost, OC durability, complex reaction mechanism and scalability issues. Some of these challenges can be addressed by understanding the impact of various process conditions on H2 yield and char formation during CLG. The present study proposes a novel integrated process simulation and experimental studies to generate large dataset used for interpretable machine learning (ML) analysis. Three different ML models including support vector machine (SVM), random forest (RF), and gradient boost regression (GBR) were used to develop models for predicting the H2 and char yield during CLG. The GBR outperformed other models for the prediction of H2 and char yield during CLG with R2 value > 0.9. Among the experimental conditions, the temperature (T) and steam to biomass ratio (SBR) were the most relevant parameters affecting H2 and char production. Biomass ash, C, volatile matter (VM) and H content also influenced H2 and char formation. Overall, a combination of SHAP and partial dependence plot helped address the black box challenges of ML models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
mi发布了新的文献求助10
44秒前
罗添龙发布了新的文献求助10
54秒前
1分钟前
1分钟前
wonder123完成签到,获得积分10
1分钟前
陈宇航完成签到 ,获得积分10
2分钟前
小林同学0219完成签到 ,获得积分10
2分钟前
南笺完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
zhzssaijj发布了新的文献求助10
2分钟前
Willow发布了新的文献求助10
2分钟前
ll完成签到 ,获得积分10
2分钟前
顾矜应助科研通管家采纳,获得10
3分钟前
Orange应助Willow采纳,获得10
3分钟前
3分钟前
zhzssaijj完成签到,获得积分10
3分钟前
mi发布了新的文献求助10
3分钟前
yuancw完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
myg123完成签到 ,获得积分10
3分钟前
怕黑钢笔完成签到 ,获得积分10
4分钟前
DingShicong完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
Willow发布了新的文献求助10
4分钟前
4分钟前
Silence发布了新的文献求助10
4分钟前
爆米花应助jjqqqj采纳,获得30
4分钟前
维生素西发布了新的文献求助10
4分钟前
4分钟前
斯文败类应助维生素西采纳,获得10
4分钟前
爆米花应助发嗲的哑铃采纳,获得10
5分钟前
小鲤鱼本鱼应助Silence采纳,获得10
5分钟前
5分钟前
十几完成签到,获得积分10
5分钟前
jjqqqj发布了新的文献求助30
5分钟前
Yolo完成签到 ,获得积分10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 1000
求中国石油大学(北京)图书馆的硕士论文,作者董晨,十年前搞太赫兹的 500
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
Ricci Solitons in Dimensions 4 and Higher 470
Educational Research: Planning, Conducting, and Evaluating Quantitative and Qualitative Research 460
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4779759
求助须知:如何正确求助?哪些是违规求助? 4109925
关于积分的说明 12713883
捐赠科研通 3832612
什么是DOI,文献DOI怎么找? 2113885
邀请新用户注册赠送积分活动 1137264
关于科研通互助平台的介绍 1021858