清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Decoding river pollution trends and their landscape determinants in an ecologically fragile karst basin using a machine learning model

水质 喀斯特 环境科学 分水岭 水文学(农业) 地表径流 流域 污染 地表水 生态学 地质学 地理 环境工程 地图学 计算机科学 机器学习 古生物学 岩土工程 生物
作者
Guoyu Xu,Hongxiang Fan,David M. Oliver,Yibin Dai,Hengpeng Li,Yunjie Shi,Haifei Long,Kangning Xiong,Zhongming Zhao
出处
期刊:Environmental Research [Elsevier BV]
卷期号:214: 113843-113843 被引量:20
标识
DOI:10.1016/j.envres.2022.113843
摘要

Karst watersheds accommodate high landscape complexity and are influenced by both human-induced and natural activity, which affects the formation and process of runoff, sediment connectivity and contaminant transport and alters natural hydrological and nutrient cycling. However, physical monitoring stations are costly and labor-intensive, which has confined the assessment of water quality impairments on spatial scale. The geographical characteristics of catchments are potential influencing factors of water quality, often overlooked in previous studies of highly heterogeneous karst landscape. To solve this problem, we developed a machining learning method and applied Extreme Gradient Boosting (XGBoost) to predict the spatial distribution of water quality in the world's most ecologically fragile karst watershed. We used the Shapley Addition interpretation (SHAP) to explain the potential determinants. Before this process, we first used the water quality damage index (WQI-DET) to evaluate the water quality impairment status and determined that CODMn, TN and TP were causing river water quality impairments in the WRB. Second, we selected 46 watershed features based on the three key processes (sources-mobilization-transport) which affect the temporal and spatial variation of river pollutants to predict water quality in unmonitored reaches and decipher the potential determinants of river impairments. The predicting range of CODMn spanned from 1.39 mg/L to 17.40 mg/L. The predictions of TP and TN ranged from 0.02 to 1.31 mg/L and 0.25–5.72 mg/L, respectively. In general, the XGBoost model performs well in predicting the concentration of water quality in the WRB. SHAP explained that pollutant levels may be driven by three factors: anthropogenic sources (agricultural pollution inputs), fragile soils (low organic carbon content and high soil permeability to water flow), and pollutant transport mechanisms (TWI, carbonate rocks). Our study provides key data to support decision-making for water quality restoration projects in the WRB and information to help bridge the science:policy gap.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
紫陌完成签到,获得积分10
4秒前
Ray完成签到 ,获得积分10
15秒前
火星上惜天完成签到 ,获得积分10
21秒前
26秒前
李佳倩完成签到 ,获得积分10
27秒前
科研小白完成签到,获得积分10
32秒前
但大图完成签到 ,获得积分10
39秒前
aa完成签到 ,获得积分10
40秒前
49秒前
开放访天完成签到 ,获得积分10
52秒前
梅一一完成签到,获得积分10
53秒前
Nniu完成签到 ,获得积分10
1分钟前
科研通AI5应助djbj2022采纳,获得10
1分钟前
ccc完成签到 ,获得积分10
1分钟前
坦率的从波完成签到 ,获得积分10
1分钟前
GealAntS完成签到,获得积分0
1分钟前
真真完成签到 ,获得积分10
1分钟前
1分钟前
xy完成签到 ,获得积分10
1分钟前
阿弥陀佛完成签到,获得积分10
1分钟前
1分钟前
vidgers完成签到 ,获得积分10
1分钟前
djbj2022发布了新的文献求助10
1分钟前
huanghe完成签到,获得积分10
1分钟前
自由的无色完成签到 ,获得积分10
1分钟前
吃鱼骨头的猫完成签到,获得积分10
1分钟前
HY完成签到 ,获得积分10
1分钟前
HeLL0完成签到 ,获得积分10
1分钟前
MM完成签到 ,获得积分10
1分钟前
自觉石头完成签到 ,获得积分10
1分钟前
2分钟前
雍州小铁匠完成签到 ,获得积分10
2分钟前
哈哈2022完成签到,获得积分10
2分钟前
沙与沫完成签到 ,获得积分10
2分钟前
忧伤的慕梅完成签到 ,获得积分10
2分钟前
victory_liu完成签到,获得积分10
2分钟前
Shrimp完成签到 ,获得积分10
2分钟前
现代山雁完成签到 ,获得积分10
2分钟前
平凡世界完成签到 ,获得积分10
2分钟前
2分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3788347
求助须知:如何正确求助?哪些是违规求助? 3333722
关于积分的说明 10263216
捐赠科研通 3049616
什么是DOI,文献DOI怎么找? 1673639
邀请新用户注册赠送积分活动 802120
科研通“疑难数据库(出版商)”最低求助积分说明 760511