Carbon emission intensity measurement and spatial effect of high energy consuming industries: evidence from China

强度(物理) 碳纤维 中国 环境科学 能量强度 能量(信号处理) 发射强度 大气科学 材料科学 物理 地理 统计 数学 光学 复合材料 考古 复合数 光致发光
出处
期刊:Global Nest Journal [University of the Aegean]
标识
DOI:10.30955/gnj.06437
摘要

<p style="text-indent:20.0pt"><span style="font-size:10.5pt"><span style="font-family:&quot;Times New Roman&quot;,serif"><span style="color:black"><span class="fontstyle01" style="font-family:仿宋"><span style="color:black"><span lang="EN-US" style="font-size:10.0pt">&nbsp;High energy consumption industry is an important source of carbon dioxide emissions, and reducing pollution and carbon is an important measure for China to achieve the goal of "2030 carbon peak 2060 carbon neutral". Based on the improvement of the traditional calculation method of IPCC carbon emission intensity, this paper measures the carbon emission intensity, selects the data of high energy consuming industries in 30 provinces in China from 1997 to 2022 as samples, uses the stipat model and Moran index to analyze the correlation of the influencing factors of carbon emission, and uses the spatial measurement model to study the spatial effect of carbon emission intensity. The results show that: first, the overall carbon emission intensity of high energy consuming industries shows a downward trend, with typical spatial heterogeneity. During the sample period, the carbon emission intensity of high energy consuming industries in 30 provinces in China was calculated based on the IPPC method, with the overall decline. Second, the carbon emission intensity of high energy consuming industries has significant spatial autocorrelation characteristics. According to the global Moran index, the center of gravity moves from east to West as a whole. Third, the carbon emission intensity of high energy consuming industries is affected by multiple environmental factors. Industrial structure (INS), regional gross domestic product (GDP) and regional economic development (ECO) have a significant impact. Fourth, the carbon emission intensity of high energy consuming industries has a significant spatial spillover effect. According to the regression results of spatial Dobbin model with double fixed effects, the direct and indirect effects of carbon emission intensity of high energy consuming industries are significant.</span></span></span></span></span></span></p>
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fafafa发布了新的文献求助10
刚刚
znlion发布了新的文献求助10
刚刚
NexusExplorer应助Arturo采纳,获得30
刚刚
所所应助嗷嗷嗷采纳,获得10
5秒前
5秒前
5秒前
紫色的云完成签到,获得积分10
5秒前
xiao完成签到,获得积分10
6秒前
兰彻完成签到,获得积分10
6秒前
Wust发布了新的文献求助10
9秒前
FashionBoy应助细腻的三问采纳,获得10
10秒前
余鑫发布了新的文献求助10
10秒前
11秒前
walongjushi完成签到 ,获得积分10
11秒前
enn完成签到 ,获得积分10
11秒前
渴望者发布了新的文献求助10
12秒前
在水一方应助小菜鸟采纳,获得10
12秒前
13秒前
默默的棒棒糖完成签到 ,获得积分10
15秒前
zhangjing发布了新的文献求助20
15秒前
Cici发布了新的文献求助10
16秒前
小小发布了新的文献求助80
16秒前
小栗子关注了科研通微信公众号
17秒前
老黑完成签到 ,获得积分10
18秒前
znlion完成签到,获得积分10
18秒前
19秒前
19秒前
19秒前
19秒前
英姑应助aaa采纳,获得10
20秒前
小易发布了新的文献求助10
21秒前
曾经以筠完成签到 ,获得积分20
21秒前
liw完成签到 ,获得积分10
22秒前
LLL发布了新的文献求助10
22秒前
小静完成签到,获得积分10
23秒前
大模型应助韩豆乐采纳,获得10
23秒前
孤独小蜜蜂完成签到,获得积分20
23秒前
苏幕遮发布了新的文献求助10
25秒前
科研通AI6应助科研通管家采纳,获得10
26秒前
大个应助科研通管家采纳,获得10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
ACOG Practice Bulletin: Polycystic Ovary Syndrome 500
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5602782
求助须知:如何正确求助?哪些是违规求助? 4687876
关于积分的说明 14851686
捐赠科研通 4685453
什么是DOI,文献DOI怎么找? 2540122
邀请新用户注册赠送积分活动 1506835
关于科研通互助平台的介绍 1471450