免疫检查点
肿瘤微环境
下调和上调
黑色素瘤
癌症研究
CD8型
趋化因子
转录组
封锁
免疫系统
趋化因子受体
免疫疗法
免疫学
生物
受体
计算生物学
医学
内科学
基因表达
基因
生物化学
作者
Sahil Sahni,Binbin Wang,Di Wu,Saugato Rahman Dhruba,Matthew Nagy,Sushant Patkar,Ingrid Ferreira,Chi-Ping Day,Kun Wang,Eytan Ruppin
标识
DOI:10.1038/s41467-024-52555-4
摘要
Abstract Immune checkpoint blockade (ICB) is a promising cancer therapy; however, resistance frequently develops. To explore ICB resistance mechanisms, we develop I mmunotherapy R esistance cell-cell I nteraction S canner (IRIS), a machine learning model aimed at identifying cell-type-specific tumor microenvironment ligand-receptor interactions relevant to ICB resistance. Applying IRIS to deconvolved transcriptomics data of the five largest melanoma ICB cohorts, we identify specific downregulated interactions, termed resistance downregulated interactions (RDI), as tumors develop resistance. These RDIs often involve chemokine signaling and offer a stronger predictive signal for ICB response compared to upregulated interactions or the state-of-the-art published transcriptomics biomarkers. Validation across multiple independent melanoma patient cohorts and modalities confirms that RDI activity is associated with CD8 + T cell infiltration and highly manifested in hot/brisk tumors. This study presents a strongly predictive ICB response biomarker, highlighting the key role of downregulating chemotaxis-associated ligand-receptor interactions in inhibiting lymphocyte infiltration in resistant tumors.
科研通智能强力驱动
Strongly Powered by AbleSci AI