Non-Destructive Analysis for Machine-Picked Tea Leaf Composition Using Near-Infrared Spectroscopy Combined Chemometric Methods

主成分分析 偏最小二乘回归 均方误差 标准差 数学 决定系数 人工神经网络 生物系统 二阶导数 标准误差 预处理器 统计 试验装置 模式识别(心理学) 人工智能 计算机科学 数学分析 生物
作者
Qinghai Jiang,Bin Chen,Jia Chen,Zhiyu Song
出处
期刊:Processes [MDPI AG]
卷期号:12 (11): 2397-2397 被引量:1
标识
DOI:10.3390/pr12112397
摘要

This paper aimed to predict the mechanical composition of machine-picked fresh tea leaves (MPFTLs) using near-infrared spectroscopy (NIRS) rapidly and non-destructively. Samples of MPFTL with different mechanical composition ratios were collected and subjected to NIRS analysis. Subsequently, various preprocessing methods were employed to eliminate extraneous noise information. Next, characteristic spectral information was extracted using the backward interval partial least squares (biPLS) method, which was subsequently subjected to principal component analysis (PCA). Finally, a predictive model was constructed by applying the back propagation artificial neural network (BP-ANN) method, which was tested by external samples to assess its predictive efficacy, and the results were expressed as root mean square error and determination coefficient of prediction (Rp2). The optimal spectral pretreatment method was the following: (standard normal variate (SNV) + second derivative (SD)). Four characteristic spectral subintervals of ([2, 3, 7, 10]) were screened out, and the cumulative contribution rate of 95.20%, attributable to the first three principal components, was determined. When the tanh transfer function was applied to construct the BP-ANN-NIRS model, the results demonstrated optimal performance, exhibiting a root mean square error and a determination coefficient of prediction (Rp2) of 0.976 and 0.027, respectively. The absolute values of prediction deviation for all prediction set samples were found to be less than 0.04. The results of the best BP-ANN model for external samples were found to be in close agreement with those of the prediction set model. NIRS technology has successfully achieved the forecasting of the mechanical composition of machine-picked fresh tea leaves rapidly and accurately, providing a fair and convenient new method for purchasing fresh tea raw materials by machines, according to their quality, and promoting the sustainable high-quality and healthy development of the tea industry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小丸子完成签到 ,获得积分10
刚刚
wanci应助典雅的俊驰采纳,获得10
1秒前
小颜儿发布了新的文献求助10
2秒前
4秒前
专一的凛完成签到,获得积分10
4秒前
5秒前
电池博士完成签到,获得积分10
5秒前
6秒前
Yukino完成签到,获得积分10
6秒前
彩色的踏歌完成签到 ,获得积分10
6秒前
田様应助xie采纳,获得10
7秒前
7秒前
阔达丹亦发布了新的文献求助10
8秒前
脑洞疼应助yshog采纳,获得10
8秒前
小罗发布了新的文献求助10
9秒前
萧寒发布了新的文献求助10
9秒前
clml完成签到,获得积分10
9秒前
huwenqi完成签到,获得积分20
10秒前
幽默书瑶发布了新的文献求助10
10秒前
华仔应助tpl采纳,获得10
10秒前
11秒前
ZYX发布了新的文献求助10
12秒前
卢珈馨发布了新的文献求助10
12秒前
Akim应助xiuwen采纳,获得10
14秒前
乐观的颦完成签到,获得积分10
14秒前
15秒前
还行啊完成签到,获得积分10
15秒前
15秒前
1212发布了新的文献求助10
16秒前
科研小锄头完成签到,获得积分10
16秒前
17秒前
17秒前
123xol发布了新的文献求助10
19秒前
杯玉完成签到,获得积分10
19秒前
幽默书瑶完成签到,获得积分10
19秒前
halo完成签到,获得积分10
20秒前
20秒前
泷与千泽发布了新的文献求助10
21秒前
Optimistic完成签到,获得积分10
21秒前
Attendre发布了新的文献求助10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5296986
求助须知:如何正确求助?哪些是违规求助? 4445980
关于积分的说明 13837948
捐赠科研通 4331070
什么是DOI,文献DOI怎么找? 2377432
邀请新用户注册赠送积分活动 1372677
关于科研通互助平台的介绍 1338246