Integrating dimensional and scaling analyses with functional modelling and graphs: An approach to comprehend mass transfer in welding

焊接 缩放比例 工业与生产工程 传质 计算机科学 工程类 机械工程 工程制图 工业工程 数学 机械 物理 几何学
作者
Akshay Dhalpe,Hossein Mokhtarian,Suraj Panicker,Di Wu,Joe David,Shahriar Bakrani Balani,José L. Martínez Lastra,Éric Coatanéa
出处
期刊:The International Journal of Advanced Manufacturing Technology [Springer Nature]
卷期号:138 (1): 61-79 被引量:1
标识
DOI:10.1007/s00170-024-14500-z
摘要

Abstract Significant efforts have been made to understand the intricacies of the welding process using numerical methods, machine learning, dimensional, and scaling analyses. Dimensional analysis (DA) is used for qualitative studies of weld pool spreading, heat transfer in welding, welding parameters, and detachment-droplet formation in welding. Nevertheless, DA have been used often in a rather conventional manner. This article proposes to combine DA principles with causally oriented graphical representations and functional analysis to augment the separate capabilities of those methods. The approach uses a physics-based functional model to decompose the welding phenomena into functions, with dimensionless numbers ( π ) representing aspects of those functions in form of mathematical relationships between the variables. These mathematical relationships are illustrated as a causally oriented graph. This graph is transformed into a system dynamic counterpart. The values of π numbers are estimated using a single example with the developed methodology. The π values in the model are the analogous of biases in Artificial Neural Networks (ANN). The current modelling approach has the advantage of exploiting supplementary sources of knowledge and consequently requires limited data in comparison to supervised machine learning (ML) algorithms used in the field. The proposed methodology is demonstrated with a case study of gas metal arc welding (GMAW) for mild steel. The developed model predicts the droplet formation in GMAW with high accuracy and offer multiple possibilities for extension and generalization to other welding and additive manufacturing processes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
believe完成签到,获得积分10
刚刚
刚刚
lili完成签到,获得积分10
1秒前
hihi发布了新的文献求助10
1秒前
万能图书馆应助研友_MLJldZ采纳,获得10
1秒前
1秒前
spongebob应助简一采纳,获得10
2秒前
2秒前
丰富的复天完成签到,获得积分10
2秒前
Meng完成签到,获得积分10
2秒前
光头大叔完成签到 ,获得积分10
2秒前
迷糊老师完成签到,获得积分10
3秒前
科研通AI2S应助吃了吃了采纳,获得10
3秒前
Zhy完成签到,获得积分10
3秒前
3秒前
hym发布了新的文献求助10
4秒前
4秒前
spd完成签到,获得积分10
4秒前
令水白完成签到 ,获得积分10
4秒前
一平发布了新的文献求助10
4秒前
脑洞疼应助mmain采纳,获得10
4秒前
积极璎发布了新的文献求助10
4秒前
sci_finder完成签到,获得积分10
5秒前
JHJ发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
7秒前
Alice完成签到,获得积分10
7秒前
pzt完成签到,获得积分10
7秒前
zm完成签到,获得积分10
7秒前
核桃应助眰恦采纳,获得10
7秒前
脑洞疼应助zq采纳,获得10
7秒前
7秒前
忆夕完成签到,获得积分10
7秒前
8秒前
Pena完成签到,获得积分10
8秒前
从容的盼晴完成签到,获得积分10
8秒前
情怀应助Bin_Liu采纳,获得10
8秒前
8秒前
FashionBoy应助南瓜饼子铺采纳,获得10
8秒前
8秒前
NXK发布了新的文献求助10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5716851
求助须知:如何正确求助?哪些是违规求助? 5242504
关于积分的说明 15279918
捐赠科研通 4867172
什么是DOI,文献DOI怎么找? 2613491
邀请新用户注册赠送积分活动 1563487
关于科研通互助平台的介绍 1520990