Design and application of a high-precision counterweighted self-calibrating surface thermometer

温度计 校准 曲面(拓扑) 材料科学 光学 计算机科学 核工程 物理 热力学 数学 量子力学 几何学 工程类
作者
Daidong Chen,Sijun Huang,Xianjie Liu,Li Feng,Qiuquan Zhang,Xiaolin Wang
出处
期刊:Review of Scientific Instruments [American Institute of Physics]
卷期号:95 (9) 被引量:1
标识
DOI:10.1063/5.0225510
摘要

In this study, a high-precision counterweight self-calibrating surface thermometer is designed to reduce human and environmental influences on a thermocouple surface thermometer during measuring. A self-weighted spring structure based on a copper substrate is designed to ensure perfect contact between the surface thermometer and the temperature source. In conjunction, a wind guard is coupled with insulating materials to optimize the thermal exchange of the surface thermometer. Subsequently, the maximum error is reduced to ±1.5 °C by system hardware optimization. However, hardware calibration alone is insufficient. Furthermore, a back propagation neural network is employed to calibrate the surface thermometer. Temperature sensor data are collected under various surface source temperatures and airflow velocities to train the neural network. Hence, the effectiveness of the proposed Gaussian function in enhancing the measurement accuracy of the surface temperature sensor is demonstrated. The results show higher stability and repeatability in temperature measurement than thermocouple-based surface thermometers. The proposed thermometer exhibits robustness against environmental and operational variability with a maximum indication error of −0.2 °C. In contrast, the maximum error of the surface thermometer is between −2.8 and −6.8 °C. Regarding repeatability, the standard deviation with the proposed device is 0.2%, highlighting its accuracy and consistency of performance. These results can mostly be attributed to the synergistic effect of clever mechanical design and software optimization, resulting in a surface thermometer with outstanding accuracy and repeatability.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
lll发布了新的文献求助10
2秒前
开放储完成签到,获得积分20
3秒前
3秒前
CipherSage应助孙彩瑛采纳,获得10
3秒前
猪猪hero发布了新的文献求助10
4秒前
hj完成签到,获得积分20
5秒前
6秒前
健壮的涑完成签到 ,获得积分10
6秒前
ZHI发布了新的文献求助10
8秒前
10秒前
hj发布了新的文献求助10
10秒前
科研通AI6应助冷酷严青采纳,获得10
11秒前
阿鑫完成签到 ,获得积分10
12秒前
13秒前
大模型应助寂11采纳,获得10
14秒前
九星完成签到 ,获得积分10
15秒前
li发布了新的文献求助10
16秒前
ZHI完成签到,获得积分10
19秒前
丘比特应助金屋藏娇采纳,获得10
19秒前
开放储关注了科研通微信公众号
20秒前
20秒前
斯文的文轩完成签到,获得积分10
25秒前
26秒前
鱼鱼应助吵吵258采纳,获得30
26秒前
sfc999完成签到,获得积分10
26秒前
ding应助科研通管家采纳,获得10
27秒前
云初应助科研通管家采纳,获得10
27秒前
orixero应助科研通管家采纳,获得10
27秒前
酷波er应助科研通管家采纳,获得10
27秒前
思源应助科研通管家采纳,获得10
27秒前
隐形曼青应助科研通管家采纳,获得20
27秒前
浮游应助科研通管家采纳,获得10
27秒前
浮游应助科研通管家采纳,获得10
27秒前
搜集达人应助科研通管家采纳,获得10
27秒前
Lucas应助科研通管家采纳,获得10
27秒前
传奇3应助科研通管家采纳,获得10
27秒前
lkx应助科研通管家采纳,获得10
28秒前
完美世界应助科研通管家采纳,获得10
28秒前
浮游应助科研通管家采纳,获得10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557589
求助须知:如何正确求助?哪些是违规求助? 4642695
关于积分的说明 14668800
捐赠科研通 4584089
什么是DOI,文献DOI怎么找? 2514564
邀请新用户注册赠送积分活动 1488838
关于科研通互助平台的介绍 1459512