Machine learning‐based prediction of sarcopenia in community‐dwelling middle‐aged and older adults: findings from the CHARLS

肌萎缩 纵向研究 医学 老年学 物理医学与康复 心理学 内科学 病理
作者
Zongjie Wang,Yafei Wu,Junmin Zhu,Ya Fang
出处
期刊:Psychogeriatrics [Wiley]
卷期号:25 (1): e13205-e13205 被引量:1
标识
DOI:10.1111/psyg.13205
摘要

Abstract Background Sarcopenia is a prominent issue among aging populations and associated with poor health outcomes. This study aimed to examine the predictive value of questionnaire and biomarker data for sarcopenia, and to further develop a user‐friendly calculator for community‐dwelling middle‐aged and older adults. Methods We used two waves (2011 and 2013) of the China Health and Retirement Longitudinal Study (CHARLS) to predict sarcopenia, defined by the Asian Working Group for Sarcopenia 2019 criteria. We restricted the analytical sample to adults aged 45 or above ( N = 2934). Five machine learning models were used to construct Q‐based (only questionnaire variables), Bio‐based (only biomarker variables), and combined (questionnaire plus biomarker variables) models. Area under the receiver operating characteristic curve (AUROC) was used for performance assessment. Temporal external validation was performed based on two datasets from CHARLS. Important predictors were identified by Shapley values and coefficients. Results Extreme gradient boosting (XGBoost), considering both questionnaire and biomarker characteristics, emerged as the optimal model, and its AUROC was 0.759 (95% CI: 0.747–0.771) at a decision threshold of 0.20 on the test set. Models also performed well on the external datasets. We found that cognitive function was the most important predictor in both Q‐based and combined models, and blood urea nitrogen was the most important predictor in the Bio‐based model. Other key predictors included education, haematocrit, total cholesterol, drinking, number of chronic diseases, and instrumental activities of daily living score. Conclusions Our findings offer a potential for early screening and targeted prevention of sarcopenia among middle‐aged and older adults in the community setting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
禾下乘凉发布了新的文献求助10
1秒前
中华宅女完成签到,获得积分10
1秒前
NIU完成签到,获得积分10
1秒前
2秒前
chen完成签到,获得积分10
2秒前
没羽箭发布了新的文献求助10
2秒前
刘红意发布了新的文献求助10
2秒前
朱朱发布了新的文献求助30
2秒前
微光熠发布了新的文献求助10
2秒前
yybaby完成签到,获得积分10
2秒前
2秒前
3秒前
Joyhold完成签到,获得积分10
3秒前
sekidesu完成签到,获得积分10
3秒前
闪闪乘风完成签到 ,获得积分10
3秒前
Diego发布了新的文献求助10
3秒前
4秒前
惠慧完成签到,获得积分10
4秒前
酷波er应助Sober采纳,获得10
4秒前
Jane发布了新的文献求助10
4秒前
爆米花应助林婧采纳,获得10
5秒前
妹儿爷发布了新的文献求助10
5秒前
完美世界应助KK采纳,获得10
5秒前
feifei完成签到,获得积分10
6秒前
6秒前
6秒前
6秒前
CuiCui发布了新的文献求助10
6秒前
Acane发布了新的文献求助10
7秒前
圈圈完成签到,获得积分10
7秒前
ccc完成签到 ,获得积分10
7秒前
天天快乐应助九月采纳,获得10
8秒前
malenia完成签到,获得积分10
9秒前
安静达完成签到,获得积分10
9秒前
Ava应助Sam十九采纳,获得10
9秒前
调调单单发布了新的文献求助10
9秒前
酱子完成签到,获得积分10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Half Century of the Sonogashira Reaction 1000
Artificial Intelligence driven Materials Design 600
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5189614
求助须知:如何正确求助?哪些是违规求助? 4373694
关于积分的说明 13617613
捐赠科研通 4227255
什么是DOI,文献DOI怎么找? 2318586
邀请新用户注册赠送积分活动 1317262
关于科研通互助平台的介绍 1267184