Few-shot Fine-grained Image Classification via Multi-Frequency Neighborhood and Double-cross Modulation

计算机科学 水准点(测量) 人工智能 模式识别(心理学) 背景(考古学) 图像(数学) 班级(哲学) 弹丸 组分(热力学) 基本事实 领域(数学分析) 调制(音乐) 数学 地理 哲学 大地测量学 数学分析 考古 物理 有机化学 化学 美学 热力学
作者
Hegui Zhu,Zhan Gao,Jiayi Wang,Yange Zhou,Chengqing Li
出处
期刊:Cornell University - arXiv 被引量:2
标识
DOI:10.48550/arxiv.2207.08547
摘要

Traditional fine-grained image classification typically relies on large-scale training samples with annotated ground-truth. However, some sub-categories have few available samples in real-world applications, and current few-shot models still have difficulty in distinguishing subtle differences among fine-grained categories. To solve this challenge, we propose a novel few-shot fine-grained image classification network (FicNet) using multi-frequency neighborhood (MFN) and double-cross modulation (DCM). MFN focuses on both spatial domain and frequency domain to capture multi-frequency structural representations, which reduces the influence of appearance and background changes to the intra-class distance. DCM consists of bi-crisscross component and double 3D cross-attention component. It modulates the representations by considering global context information and inter-class relationship respectively, which enables the support and query samples respond to the same parts and accurately identify the subtle inter-class differences. The comprehensive experiments on three fine-grained benchmark datasets for two few-shot tasks verify that FicNet has excellent performance compared to the state-of-the-art methods. Especially, the experiments on two datasets, "Caltech-UCSD Birds" and "Stanford Cars", can obtain classification accuracy 93.17\% and 95.36\%, respectively. They are even higher than that the general fine-grained image classification methods can achieve.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ding应助飘逸的吐司采纳,获得10
刚刚
豌豆应助fireking_sid采纳,获得10
1秒前
2秒前
Lawrence发布了新的文献求助10
2秒前
3秒前
文艺的口红完成签到 ,获得积分10
3秒前
Lsy完成签到,获得积分10
4秒前
李沐唅完成签到 ,获得积分10
5秒前
5秒前
6秒前
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
SciGPT应助科研通管家采纳,获得30
6秒前
CodeCraft应助科研通管家采纳,获得10
6秒前
6秒前
Orange应助科研通管家采纳,获得10
6秒前
卡卡西应助科研通管家采纳,获得10
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
随遇而安应助科研通管家采纳,获得10
7秒前
7秒前
大模型应助科研通管家采纳,获得10
7秒前
7秒前
Alex应助小贺采纳,获得20
7秒前
晗晗子完成签到,获得积分10
7秒前
Hello应助小华采纳,获得10
8秒前
小费发布了新的文献求助30
8秒前
8秒前
tsuki发布了新的文献求助30
8秒前
Wt发布了新的文献求助10
9秒前
顾矜应助cx采纳,获得10
10秒前
今后应助云_123采纳,获得10
11秒前
13秒前
13秒前
高高完成签到 ,获得积分10
14秒前
xiaohuhuan完成签到,获得积分10
14秒前
浅小言完成签到 ,获得积分10
15秒前
yygz0703完成签到 ,获得积分10
16秒前
Yxian完成签到,获得积分10
17秒前
18秒前
Lawrence完成签到,获得积分10
18秒前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Treatise on Process Metallurgy Volume 3: Industrial Processes (2nd edition) 250
Progress in Inorganic Chemistry 200
Between east and west transposition of cultural systems and military technology of fortified landscapes 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3825763
求助须知:如何正确求助?哪些是违规求助? 3367969
关于积分的说明 10448566
捐赠科研通 3087423
什么是DOI,文献DOI怎么找? 1698676
邀请新用户注册赠送积分活动 816871
科研通“疑难数据库(出版商)”最低求助积分说明 769973