环氧树脂
复合材料
材料科学
亚胺
粘结强度
复合环氧材料
复合数
碳纤维
胶粘剂
化学
有机化学
催化作用
图层(电子)
作者
Yue Jiang,Shuai Wang,Weifu Dong,Tatsuo Kaneko,Mingqing Chen,Dongjian Shi
出处
期刊:Materials
[Multidisciplinary Digital Publishing Institute]
日期:2023-02-15
卷期号:16 (4): 1604-1604
被引量:13
摘要
Carbon fiber (CF) is widely used in the preparation of carbon-fiber-reinforced polymer composites (CFRP) in which it is combined with epoxy resin due to its good mechanical properties. Thermosetting bisphenol A epoxy resin, as one of the most common polymer materials, is a non-renewable resource, leading to a heavy environmental burden and resource waste. To solve the above problems and achieve high mechanical and thermal properties comparable to those of bisphenol A, herein, a high-performance, degradable and recyclable bio-based epoxy resin was developed by reacting the lignin derivative vanillin with 4-amino cyclohexanol via Schiff base. This bio-based epoxy resin showed a Young's modulus of 2.68 GPa and tensile strength of 44 MPa, 36.8% and 15.8% higher than those of bisphenol A epoxy, respectively. Based on the reversible exchange reaction of the imine bond, the resin exhibited good degradation in an acidic environment and was recoverable by heat treatment. Moreover, the prepared epoxy resin could be used to prepare carbon fiber (CF)-reinforced composites. By washing off the epoxy resin, the carbon fiber could be completely recycled. The recovered carbon fiber was well preserved and could be used again for the preparation of composite materials to realize the complete recovery and utilization of carbon fiber. This study opens a way for the preparation of high-performance epoxy resin and the effective recycling of carbon fiber.
科研通智能强力驱动
Strongly Powered by AbleSci AI