An improved burr size prediction method based on the 1D-ResNet model and transfer learning

稳健性(进化) 材料科学 残余物 废品 算法 计算机科学 生物化学 基因 化学 冶金
作者
Zijian Liu,Bingxuan Guo,Fenghe Wu,Tianjie Han,Lei Zhang
出处
期刊:Journal of Manufacturing Processes [Elsevier]
卷期号:84: 183-197 被引量:4
标识
DOI:10.1016/j.jmapro.2022.09.060
摘要

Cutting burrs, which are common in the manufacturing process of aluminum alloy wheel hubs, can severely affect the quality of the wheel hub surface and increase the scrap rate. An accurate prediction of the cutting burr size is the basis for solving the burr problem using optimization means. However, wheel hub cutting burrs can be measured only by offline microscopy, which makes acquiring burr size samples challenging, and traditional data fitting and prediction methods perform poorly for limited number of samples. To solve this problem, this paper proposes an improved method for constructing a burr length prediction model. A constitutive model of the wheel hub material A356.2 aluminum alloy is constructed using mechanical tests. This constitutive model is applied to simulate the wheel cutting burr, and the simulation results are verified using cutting experiments. Then, a large amount of simulation is performed, and a one-dimensional residual network (1D-ResNet) is constructed and trained with the simulation data; the results show that the 1D-ResNet model has stronger stability and robustness and improved prediction accuracy compared to the traditional data processing methods. Based on the transfer learning method, the trained 1D-ResNet model is fine-tuned by using the cutting experimental data, and a burr size prediction model fusing the simulation data and the experimental data is constructed. The verification results show that the proposed method can achieve high prediction accuracy with limited number of samples, thus effectively solving the engineering problem of wheel cutting burr size prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
周晓发布了新的文献求助10
1秒前
梓亮完成签到,获得积分10
3秒前
fly发布了新的文献求助10
3秒前
4秒前
May发布了新的文献求助10
4秒前
丘比特应助sherman采纳,获得10
4秒前
科目三应助刘xiansheng采纳,获得10
4秒前
5秒前
研友_P85D6Z发布了新的文献求助10
5秒前
qzt完成签到,获得积分10
6秒前
华仔应助Waris采纳,获得10
6秒前
刘老师完成签到,获得积分10
7秒前
奋斗的万怨完成签到 ,获得积分10
7秒前
7秒前
7秒前
NexusExplorer应助现代的雪糕采纳,获得10
8秒前
8秒前
8秒前
俭朴的斓发布了新的文献求助10
9秒前
10秒前
小付完成签到,获得积分10
10秒前
11秒前
濮阳香发布了新的文献求助10
11秒前
共享精神应助茄子采纳,获得10
11秒前
12秒前
坦率老头完成签到,获得积分20
12秒前
lululuao发布了新的文献求助10
13秒前
13秒前
LZYJJ发布了新的文献求助10
13秒前
14秒前
斯文败类应助yyy采纳,获得10
14秒前
阮科完成签到,获得积分20
14秒前
南宫完成签到,获得积分10
14秒前
Danta完成签到 ,获得积分10
15秒前
Criminology34应助坦率老头采纳,获得10
16秒前
量子星尘发布了新的文献求助10
16秒前
gyr发布了新的文献求助10
17秒前
科研通AI6应助May采纳,获得10
17秒前
lululuao完成签到,获得积分10
18秒前
Waris发布了新的文献求助10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5653245
求助须知:如何正确求助?哪些是违规求助? 4789556
关于积分的说明 15063390
捐赠科研通 4811797
什么是DOI,文献DOI怎么找? 2574103
邀请新用户注册赠送积分活动 1529802
关于科研通互助平台的介绍 1488519