Machine learning-based Automatic Evaluation of Tissue Handling Skills in Laparoscopic Colorectal Surgery: A Retrospective Experimental Study

医学 像素 人工智能 腹腔镜手术 帧(网络) 外科 失血 腹腔镜检查 机器学习 计算机科学 电信
作者
Shoma Sasaki,Daichi Kitaguchi,Shin Takenaka,Kei Nakajima,Kimimasa Sasaki,Tateo Ogane,Nobuyoshi Takeshita,Naoto Gotohda,Masaaki Ito
出处
期刊:Annals of Surgery [Lippincott Williams & Wilkins]
卷期号:278 (2): e250-e255 被引量:13
标识
DOI:10.1097/sla.0000000000005731
摘要

Objective: To develop a machine learning model that automatically quantifies the spread of blood in the surgical field using intraoperative videos of laparoscopic colorectal surgery and evaluate whether the index measured with the developed model can be used to assess tissue handling skill. Background: Although skill evaluation is crucial in laparoscopic surgery, existing evaluation systems suffer from evaluator subjectivity and are labor-intensive. Therefore, automatic evaluation using machine learning is potentially useful. Materials and Methods: In this retrospective experimental study, we used training data with annotated labels of blood or non-blood pixels on intraoperative images to develop a machine learning model to classify pixel RGB values into blood and non-blood. The blood pixel count per frame (the total number of blood pixels throughout a surgery divided by the number of frames) was compared among groups of surgeons with different tissue handling skills. Results: The overall accuracy of the machine learning model for the blood classification task was 85.7%. The high tissue handling skill group had the lowest blood pixel count per frame, and the novice surgeon group had the highest count (mean [SD]: high tissue handling skill group 20972.23 [19287.05] vs. low tissue handling skill group 34473.42 [28144.29] vs. novice surgeon group 50630.04 [42427.76], P <0.01). The difference between any 2 groups was significant. Conclusions: We developed a machine learning model to measure blood pixels in laparoscopic colorectal surgery images using RGB information. The blood pixel count per frame measured with this model significantly correlated with surgeons’ tissue handling skills.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助郑木木采纳,获得10
刚刚
zfihead发布了新的文献求助10
刚刚
1秒前
青冥发布了新的文献求助50
1秒前
王振兴发布了新的文献求助10
1秒前
午木发布了新的文献求助10
1秒前
1秒前
2秒前
阿姊完成签到 ,获得积分10
2秒前
活力成败完成签到,获得积分10
2秒前
科研通AI5应助徐仁森采纳,获得30
2秒前
tqs完成签到,获得积分10
2秒前
好运来完成签到,获得积分10
2秒前
YifanWang应助笑点低紊采纳,获得20
4秒前
李爱国应助没什么想说的采纳,获得10
4秒前
yzy完成签到,获得积分10
5秒前
Jasper应助er采纳,获得10
5秒前
科目三应助dengy采纳,获得10
6秒前
充电宝应助白兔奶糖采纳,获得10
6秒前
6秒前
昏睡的蟠桃应助快乐如雪采纳,获得50
7秒前
忧心的丸子完成签到,获得积分10
7秒前
zz完成签到,获得积分10
7秒前
8秒前
星露谷老农完成签到,获得积分10
8秒前
8秒前
大漂亮发布了新的文献求助30
9秒前
qwe完成签到,获得积分10
9秒前
完美世界应助可耐的香芦采纳,获得10
9秒前
10秒前
英俊的铭应助斯文火龙果采纳,获得10
11秒前
希望天下0贩的0应助zfihead采纳,获得10
11秒前
等等完成签到,获得积分10
11秒前
11秒前
12秒前
安阳完成签到,获得积分10
12秒前
轻松的听白完成签到,获得积分10
12秒前
郑木木完成签到,获得积分10
13秒前
善学以致用应助Ran666778采纳,获得10
13秒前
苯ben发布了新的文献求助10
13秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3796238
求助须知:如何正确求助?哪些是违规求助? 3341180
关于积分的说明 10304661
捐赠科研通 3057743
什么是DOI,文献DOI怎么找? 1677834
邀请新用户注册赠送积分活动 805683
科研通“疑难数据库(出版商)”最低求助积分说明 762740