经济
跳跃扩散
跳跃
随机波动
马尔科夫蒙特卡洛
波动性(金融)
贝叶斯概率
计量经济学
库存(枪支)
一致性(知识库)
标准差
数学
统计
物理
机械工程
几何学
工程类
量子力学
作者
Andrew Carverhill,Dan Luo
标识
DOI:10.1016/j.finmar.2022.100786
摘要
We examine time-varying jump risk for modeling stock price dynamics and cross-sectional option prices. We explore jump-diffusion specifications with two independently evolving processes for stochastic volatility and jump intensity, respectively. We explicitly impose time-series consistency in model estimation using a Markov Chain Monte Carlo (MCMC) method. We find that both the jump size and standard deviation of jump size premia are more prominent under time-varying jump risk. Simultaneous jumps in returns and volatility help reconcile the time series of returns, volatility, and jump intensities. Finally, independent time-varying jump intensities improve the cross-sectional fit of option prices, especially at longer maturities.
科研通智能强力驱动
Strongly Powered by AbleSci AI