A self-adhesive and low-temperature-tolerant strain sensor based on organohydrogel for extreme ice and snow motion monitoring

材料科学 胶粘剂 纳米技术 智能聚合物 粘附 聚合物 电导率 极端环境 复合材料 计算机科学 化学 气象学 物理化学 图层(电子) 细菌 物理 生物 遗传学
作者
Zhongwu Bei,Yangwei Chen,Shixing Li,Zhiqiang Zhu,Jietao Xiong,Rongxiang He,Chao Zhu,Yiping Cao,Zhiyong Qian
出处
期刊:Chemical Engineering Journal [Elsevier BV]
卷期号:451: 138675-138675 被引量:45
标识
DOI:10.1016/j.cej.2022.138675
摘要

The design of conductive hydrogel materials with cold-adaptive and flexible properties is of great practical significance for preparing flexible wearable electronics to adapt to the application needs of different environments. However, traditional hydrogel-based sensors are often severely affected in terms of operating temperature range, detection accuracy, and long-term stability under extreme environments. In this study, inspired by the freezing resistance and adhesion chemistry of organisms in the nature, an organohydrogel with self-adhesive characteristics and extreme temperature tolerance, consisting of a binary solvent system of water and glycerol, is fabricated. A pyrogallol–borate complex and polypyrrole nanoparticles are incorporated into the polymer networks, which provide excellent adhesion and electrical conductivity to the organohydrogel, respectively. This conductive and shape-adaptable organohydrogel exhibits extraordinary self-adhesion, suitable mechanical strength, and excellent fatigue resistance for meeting personalized application requirements. Meanwhile, it can withstand a low temperature of −80 °C for 24 h without freezing and maintain an excellent electrical conductivity (0.12 S m−1) and high gauge factor (GF = 4.9). Therefore, the organohydrogel-based sensor exhibits excellent antifreeze properties and can be used in personal health and human–machine interfaces for extreme ice and snow sports. More importantly, the sensor can also simulate the standard of real-time capture of the skier’s body movements, providing a reference for judges to score. This study provides an exciting new direction for the development of wearable strain sensing devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张昀倩关注了科研通微信公众号
刚刚
英姑应助强健的宛儿采纳,获得10
刚刚
细腻慕儿发布了新的文献求助10
刚刚
斯文败类应助奋斗夏烟采纳,获得10
刚刚
梅梅发布了新的文献求助10
1秒前
赫若魔应助小刺采纳,获得10
1秒前
自由的姿完成签到,获得积分10
2秒前
无极微光应助dingdingdingding采纳,获得20
2秒前
2秒前
...完成签到,获得积分10
2秒前
Orange应助叶文言采纳,获得10
3秒前
3秒前
3秒前
科研通AI5应助hhh采纳,获得10
4秒前
自由的姿发布了新的文献求助10
4秒前
ning发布了新的文献求助10
4秒前
摸爬滚打发布了新的文献求助10
4秒前
长风发布了新的文献求助10
5秒前
6秒前
动人的柚子完成签到,获得积分10
6秒前
有光光光光光光完成签到,获得积分10
6秒前
7秒前
7秒前
gaigai完成签到 ,获得积分10
9秒前
王永奇完成签到 ,获得积分10
9秒前
9秒前
天天快乐应助kxuehen采纳,获得10
9秒前
ccc发布了新的文献求助10
9秒前
9秒前
10秒前
11秒前
科研通AI5应助Komorebi采纳,获得10
11秒前
雪儿发布了新的文献求助10
11秒前
暗栀发布了新的文献求助10
12秒前
12秒前
12秒前
小高发布了新的文献求助10
13秒前
14秒前
小蘑菇应助小鹿采纳,获得10
14秒前
李爱国应助ccc采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Solid-Liquid Interfaces 600
A study of torsion fracture tests 510
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
苏州地下水中新污染物及其转化产物的非靶向筛查 500
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4748170
求助须知:如何正确求助?哪些是违规求助? 4094981
关于积分的说明 12669982
捐赠科研通 3807233
什么是DOI,文献DOI怎么找? 2101745
邀请新用户注册赠送积分活动 1127005
关于科研通互助平台的介绍 1003650