A two-stage deep-learning based segmentation model for crop disease quantification based on corn field imagery

分割 阶段(地层学) 人工智能 深度学习 试验装置 领域(数学) 计算机科学 模式识别(心理学) 地图学 统计 数学 地理 生物 古生物学 纯数学
作者
L. G. Divyanth,Aanis Ahmad,Dharmendra Saraswat
出处
期刊:Smart agricultural technology [Elsevier]
卷期号:3: 100108-100108 被引量:25
标识
DOI:10.1016/j.atech.2022.100108
摘要

It is important to develop accurate disease management systems to identify and segment corn disease lesions and estimate their severity under complex field conditions. Although deep learning techniques are becoming increasingly popular to identify singular diseases, access to robust models for identifying multiple diseases and segmenting lesion areas for severity estimation under field conditions remain unsolved. In this study, a custom dataset consisting of handheld images of corn leaves infected with Gray Leaf Spot (GLS), Northern Leaf Blight (NLB), and Northern Leaf Spot (NLS) diseases, acquired under field conditions, was used to develop a novel two-stage semantic segmentation approach for identifying corn diseases and estimate their severity. Three semantic segmentation models were trained for each stage using SegNet, UNet, and DeepLabV3+ network architectures. Stage one used semantic segmentation to extract leaves from complex field backgrounds. In stage two, semantic segmentation was used to locate, identify, and calculate area coverage for disease lesions. After the models were trained, the best performance for stage one was observed from the UNet model, which achieved up to 0.9422 mean weighted intersection over union (mwIoU) and 0.8063 mean boundary F1-score (mBFScore). The best performance for stage two was observed from the DeepLabV3+ model, which could identify the disease lesions with a mwIoU of 0.7379 and mBFScore of 0.5351. Finally, severity was estimated by calculating the percentage of leaf area covered by disease lesions. In the test set, an R2 value (coefficient of determination) of 0.96 was achieved, which denotes that the integrated (UNet-DeepLabV3+) model predicted the severity of three diseases very close to the actual observations. This study developed a novel two-stage deep learning-based approach to accurately identify three targeted corn diseases and estimate their severity to pave the way for developing a field-worthy disease management system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
cc完成签到,获得积分10
1秒前
zsyf完成签到,获得积分10
1秒前
乐乐应助懒羊羊采纳,获得10
1秒前
失眠醉易完成签到 ,获得积分10
1秒前
1秒前
我是老大应助诚心的老六采纳,获得10
1秒前
飞快的珩发布了新的文献求助10
2秒前
2秒前
脑洞疼应助112采纳,获得10
2秒前
笑点低易真完成签到,获得积分10
2秒前
简单Kaze完成签到,获得积分10
3秒前
张张磊发布了新的文献求助10
3秒前
4秒前
桥墩墩完成签到,获得积分10
4秒前
5秒前
科研通AI2S应助Zhoey采纳,获得10
5秒前
搜集达人应助tongkaibing采纳,获得10
6秒前
燕子发布了新的文献求助30
6秒前
小赵发布了新的文献求助10
6秒前
zzz完成签到,获得积分10
6秒前
汪马军完成签到,获得积分10
6秒前
6秒前
7秒前
awang完成签到,获得积分10
7秒前
Kate发布了新的文献求助10
7秒前
zyzzyzzyz完成签到,获得积分10
8秒前
8秒前
怕孤独的飞飞完成签到,获得积分10
9秒前
隐形曼青应助桥墩墩采纳,获得10
9秒前
小黑发布了新的文献求助10
9秒前
科研通AI2S应助张张磊采纳,获得10
9秒前
东华完成签到,获得积分10
11秒前
SYLH应助故意的电灯胆采纳,获得10
11秒前
呆萌的悲发布了新的文献求助10
11秒前
Katherine发布了新的文献求助20
11秒前
11秒前
可爱的函函应助Sayhai采纳,获得10
12秒前
汪马军发布了新的文献求助10
12秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3789101
求助须知:如何正确求助?哪些是违规求助? 3334213
关于积分的说明 10267996
捐赠科研通 3050485
什么是DOI,文献DOI怎么找? 1674041
邀请新用户注册赠送积分活动 802435
科研通“疑难数据库(出版商)”最低求助积分说明 760607