数学
卡尔曼滤波器
控制理论(社会学)
观察员(物理)
线性化
对角矩阵
李雅普诺夫函数
线性矩阵不等式
对角线的
非线性系统
α-β滤光片
离散时间和连续时间
估计员
应用数学
扩展卡尔曼滤波器
计算机科学
数学优化
人工智能
物理
统计
量子力学
移动视界估计
控制(管理)
几何学
作者
Mohamed Boutayeb,Didier Aubry
摘要
The authors show how the extended Kalman filter, used as an observer for nonlinear discrete-time systems or extended Kalman observer (EKO), becomes a useful state estimator when the arbitrary matrices, namely R/sub k/ and Q/sub k/, are adequately chosen. As a first step, we use the linearization technique given by Boutayed et al. (1997), which consists of introducing unknown diagonal matrices to take the approximation errors into account. It is shown that the decreasing Lyapunov function condition leads to a linear matrix inequality (LMI) problem, which points out the connection between a good convergence behavior of the EKO and the instrumental matrices R/sub k/ and Q/sub k/. In order to satisfy the obtained LMI, a particular design of Q/sub k/ is given. High performances of the proposed technique are shown through numerical examples under the worst conditions.
科研通智能强力驱动
Strongly Powered by AbleSci AI