Mining interesting locations and travel sequences from GPS trajectories

全球定位系统 序列模式挖掘 GPS信号 数据挖掘 位置数据 弹道
作者
Yu Zheng,Lizhu Zhang,Xing Xie,Wei-Ying Ma
出处
期刊:The Web Conference 卷期号:: 791-800 被引量:1450
标识
DOI:10.1145/1526709.1526816
摘要

The increasing availability of GPS-enabled devices is changing the way people interact with the Web, and brings us a large amount of GPS trajectories representing people's location histories. In this paper, based on multiple users' GPS trajectories, we aim to mine interesting locations and classical travel sequences in a given geospatial region. Here, interesting locations mean the culturally important places, such as Tiananmen Square in Beijing, and frequented public areas, like shopping malls and restaurants, etc. Such information can help users understand surrounding locations, and would enable travel recommendation. In this work, we first model multiple individuals' location histories with a tree-based hierarchical graph (TBHG). Second, based on the TBHG, we propose a HITS (Hypertext Induced Topic Search)-based inference model, which regards an individual's access on a location as a directed link from the user to that location. This model infers the interest of a location by taking into account the following three factors. 1) The interest of a location depends on not only the number of users visiting this location but also these users' travel experiences. 2) Users' travel experiences and location interests have a mutual reinforcement relationship. 3) The interest of a location and the travel experience of a user are relative values and are region-related. Third, we mine the classical travel sequences among locations considering the interests of these locations and users' travel experiences. We evaluated our system using a large GPS dataset collected by 107 users over a period of one year in the real world. As a result, our HITS-based inference model outperformed baseline approaches like rank-by-count and rank-by-frequency. Meanwhile, when considering the users' travel experiences and location interests, we achieved a better performance beyond baselines, such as rank-by-count and rank-by-interest, etc.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
勇毅前行发布了新的文献求助20
1秒前
子虞发布了新的文献求助10
1秒前
alive完成签到,获得积分10
1秒前
2秒前
ssssima完成签到,获得积分10
4秒前
4秒前
7秒前
8秒前
鸭鸭发布了新的文献求助10
8秒前
华仔应助Unicorn采纳,获得10
9秒前
FashionBoy应助怡然蓝天采纳,获得30
9秒前
BMH完成签到,获得积分10
10秒前
12秒前
磊少完成签到 ,获得积分10
13秒前
浅池星发布了新的文献求助30
13秒前
大个应助粗暴的大门采纳,获得10
15秒前
ltt发布了新的文献求助10
16秒前
16秒前
19秒前
勇毅前行完成签到,获得积分10
19秒前
小灵通完成签到,获得积分10
19秒前
hongfei应助用户377采纳,获得10
19秒前
20秒前
XCXC应助ltt采纳,获得10
20秒前
xiaojian_291发布了新的文献求助10
21秒前
21秒前
21秒前
大方太清完成签到 ,获得积分10
21秒前
bkagyin应助大意的觅云采纳,获得30
22秒前
研友_Z7WQzZ发布了新的文献求助10
23秒前
lilililiy发布了新的文献求助10
23秒前
24秒前
25秒前
怡然蓝天发布了新的文献求助30
25秒前
25秒前
朱朱完成签到 ,获得积分10
25秒前
文献我超爱看完成签到 ,获得积分10
26秒前
liagse完成签到,获得积分10
27秒前
秋意浓完成签到 ,获得积分10
27秒前
CipherSage应助爱撒娇的酸奶采纳,获得10
29秒前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Risks and Security of Internet and Systems CRiSIS 2024 200
Worked Bone, Antler, Ivory, and Keratinous Materials 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3828033
求助须知:如何正确求助?哪些是违规求助? 3370323
关于积分的说明 10462767
捐赠科研通 3090268
什么是DOI,文献DOI怎么找? 1700299
邀请新用户注册赠送积分活动 817812
科研通“疑难数据库(出版商)”最低求助积分说明 770442