可扩展性
计算机科学
现场可编程门阵列
地点
平行性(语法)
并行计算
利用
库达
星团(航天器)
绘图
节点(物理)
计算机体系结构
GPU群集
领域(数学)
计算科学
计算机图形学(图像)
嵌入式系统
操作系统
工程类
哲学
结构工程
语言学
纯数学
计算机安全
数学
作者
Kuen Hung Tsoi,Wayne Luk
标识
DOI:10.1145/1723112.1723134
摘要
This paper describes a heterogeneous computer cluster called Axel. Axel contains a collection of nodes; each node can include multiple types of accelerators such as FPGAs (Field Programmable Gate Arrays) and GPUs (Graphics Processing Units). A Map-Reduce framework for the Axel cluster is presented which exploits spatial and temporal locality through different types of processing elements and communication channels. The Axel system enables the first demonstration of FPGAs, GPUs and CPUs running collaboratively for N-body simulation. Performance improvement from 4.4 times to 22.7 times has been achieved using our approach, which shows that the Axel system can combine the benefits of the specialization of FPGA, the parallelism of GPU, and the scalability of computer clusters.
科研通智能强力驱动
Strongly Powered by AbleSci AI