离子液体
化学物理
纳米孔
离子键合
分子动力学
离子电导率
离子
化学
德拜长度
等压法
材料科学
热力学
物理化学
计算化学
纳米技术
电解质
有机化学
物理
电极
催化作用
作者
Guido Ori,François Villemot,Lydie Viau,André Vioux,Benoît Coasne
标识
DOI:10.1080/00268976.2014.902138
摘要
Molecular dynamics simulations in the isobaric–isothermal ensemble are used to investigate the structure and dynamics of an ionic liquid confined at ambient temperature and pressure in hydroxylated amorphous silica nanopores. The use of the isobaric–isothermal ensemble allows estimating the effect of confinement and surface chemistry on the density of the confined ionic liquid. The structure of the confined ionic liquid is investigated using density profiles and structural order parameters while its dynamics is assessed by determining the mobility and ionic conductivity of the confined phase. Despite the important screening of the electrostatic interactions (owing to the small Debye length in ionic liquids), the local structure of the confined ionic liquid is found to be mostly driven by electrostatic interactions. We show that both the structure and dynamics of the confined ionic liquid can be described as the sum of a surface contribution arising from the ions in contact with the surface and a bulk-like contribution arising from the ions located in the pore centre; as a result, most properties of the confined ionic liquid are a simple function of the surface-to-volume ratio of the host porous material. In contrast, the ionic conductivity of the confined ionic liquid, which is a collective dynamical property, is found to be similar to the bulk. This study sheds light on the complex behaviour of hybrid materials made up of ionic liquid confined in inorganic porous materials.
科研通智能强力驱动
Strongly Powered by AbleSci AI