Mechanisms of Single-Walled Carbon Nanotube Nucleation, Growth, and Healing Determined Using QM/MD Methods

成核 碳纳米管 过饱和度 纳米技术 分子动力学 材料科学 化学物理 冷凝 化学 计算化学 热力学 有机化学 物理
作者
Alister J. Page,Yasuhito Ohta,Stephan Irle,Keiji Morokuma
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:43 (10): 1375-1385 被引量:115
标识
DOI:10.1021/ar100064g
摘要

Since their discovery in the early 1990s, single-walled carbon nanotubes (SWNTs) have spawned previously unimaginable commercial and industrial technologies. Their versatility stems from their unique electronic, physical/chemical, and mechanical properties, which set them apart from traditional materials. Many researchers have investigated SWNT growth mechanisms in the years since their discovery. The most prevalent of these is the vapor-liquid-solid (VLS) mechanism, which is based on experimental observations. Within the VLS mechanism, researchers assume that the formation of a SWNT starts with co-condensation of carbon and metal atoms from vapor to form liquid metal carbide. Once the liquid reaches supersaturation, the solid phase nanotubes begin to grow. The growth process is partitioned into three distinct stages: nucleation of a carbon "cap-precursor," "cap-to-tube" transformation, and continued SWNT growth. In recent years, molecular dynamics (MD) simulations have come to the fore with respect to SWNT growth. MD simulations lead to spatial and temporal resolutions of these processes that are superior to those possible using current experimental techniques, and so provide valuable information regarding the growth process that researchers cannot obtain experimentally. In this Account, we review our own recent efforts to simulate SWNT nucleation, growth, and healing phenomena on transition-metal catalysts using quantum mechanical molecular dynamics (QM/MD) methods. In particular, we have validated each stage of the SWNT condensation mechanism using a self-consistent-charge density-functional tight-binding (SCC-DFTB) methodology. With respect to the nucleation of a SWNT cap-precursor (stage 1), we have shown that the presence of a transition-metal carbide particle is not a necessary prerequisite for SWNT nucleation, contrary to conventional experimental presumptions. The formation and coalescence of polyyne chains on the metal surface occur first, followed by the formation of the SWNT cap-precursor, "ring condensation", and the creation of an sp(2)-hybridized carbon structure. In our simulations, the nucleation process takes approximately 400 ps. This first step occurs over a much longer time scale than the second stage of SWNT condensation (approximately 50 ps). We therefore observe SWNT nucleation to be akin to the rate-limiting step of the SWNT formation process. In addition to the QM/MD simulation of various stages of SWNT nucleation, growth, and healing processes, we have determined the effects of temperature, catalyst composition, and catalyst size on the kinetics and mechanism of SWNT growth. With respect to temperature dependence, we observe a "sweet-spot" with respect to the efficiency of SWNT growth. In addition, Ni-catalyzed SWNT growth is observed to be 70-100% faster compared to Fe-catalyzed SWNT growth, depending on the catalyst particle size. We also observe a noticeable increase in SWNT growth rates using smaller catalyst particles. Finally, we review our recent QM/MD investigation of SWNT healing. In particular, we recount mechanisms by which adatom defects, monovacancy defects, and a "5-7 defect" are removed from a nascent SWNT. The effectiveness of these healing mechanisms depends on the rate at which carbon moieties are incorporated into the growing SWNT. Explicitly, we observe that healing is promoted using a slower carbon supply rate. From this rudimentary control of SWNT healing, we propose a route towards chirality-controlled SWNT growth.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
粗心的飞槐完成签到 ,获得积分10
1秒前
king完成签到 ,获得积分10
11秒前
17秒前
悠明夜月完成签到 ,获得积分10
21秒前
23秒前
朝阳完成签到 ,获得积分10
24秒前
叶痕TNT完成签到 ,获得积分10
27秒前
Miyano0818发布了新的文献求助30
28秒前
Alandia完成签到 ,获得积分10
31秒前
蒲蒲完成签到 ,获得积分10
36秒前
三个气的大门完成签到 ,获得积分10
36秒前
liang19640908完成签到 ,获得积分10
39秒前
cgs完成签到 ,获得积分10
41秒前
乐观的星月完成签到 ,获得积分10
41秒前
眯眯眼的访冬完成签到 ,获得积分10
42秒前
Tonald Yang完成签到 ,获得积分20
43秒前
fff完成签到 ,获得积分10
43秒前
王多肉完成签到,获得积分10
47秒前
52秒前
CodeCraft应助小小铱采纳,获得30
55秒前
自由的无色完成签到 ,获得积分10
57秒前
小马甲应助lopper采纳,获得30
58秒前
loren313完成签到,获得积分0
1分钟前
xiao完成签到 ,获得积分10
1分钟前
xsy完成签到 ,获得积分10
1分钟前
Estella完成签到 ,获得积分10
1分钟前
小小铱完成签到,获得积分10
1分钟前
sanker完成签到 ,获得积分10
1分钟前
CuteG完成签到 ,获得积分10
1分钟前
1分钟前
发发完成签到 ,获得积分10
1分钟前
活力的珊完成签到 ,获得积分10
1分钟前
坏坏的快乐完成签到,获得积分10
1分钟前
lilaccalla完成签到 ,获得积分10
1分钟前
呆萌滑板完成签到 ,获得积分10
1分钟前
xl完成签到 ,获得积分10
1分钟前
ocean完成签到,获得积分10
1分钟前
1分钟前
Fern完成签到 ,获得积分10
2分钟前
又又完成签到,获得积分10
2分钟前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3798521
求助须知:如何正确求助?哪些是违规求助? 3344082
关于积分的说明 10318430
捐赠科研通 3060628
什么是DOI,文献DOI怎么找? 1679732
邀请新用户注册赠送积分活动 806761
科研通“疑难数据库(出版商)”最低求助积分说明 763353