清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Mechanisms of Single-Walled Carbon Nanotube Nucleation, Growth, and Healing Determined Using QM/MD Methods

成核 碳纳米管 过饱和度 纳米技术 分子动力学 材料科学 化学物理 冷凝 化学 计算化学 热力学 有机化学 物理
作者
Alister J. Page,Yasuhito Ohta,Stephan Irle,Keiji Morokuma
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:43 (10): 1375-1385 被引量:115
标识
DOI:10.1021/ar100064g
摘要

Since their discovery in the early 1990s, single-walled carbon nanotubes (SWNTs) have spawned previously unimaginable commercial and industrial technologies. Their versatility stems from their unique electronic, physical/chemical, and mechanical properties, which set them apart from traditional materials. Many researchers have investigated SWNT growth mechanisms in the years since their discovery. The most prevalent of these is the vapor-liquid-solid (VLS) mechanism, which is based on experimental observations. Within the VLS mechanism, researchers assume that the formation of a SWNT starts with co-condensation of carbon and metal atoms from vapor to form liquid metal carbide. Once the liquid reaches supersaturation, the solid phase nanotubes begin to grow. The growth process is partitioned into three distinct stages: nucleation of a carbon "cap-precursor," "cap-to-tube" transformation, and continued SWNT growth. In recent years, molecular dynamics (MD) simulations have come to the fore with respect to SWNT growth. MD simulations lead to spatial and temporal resolutions of these processes that are superior to those possible using current experimental techniques, and so provide valuable information regarding the growth process that researchers cannot obtain experimentally. In this Account, we review our own recent efforts to simulate SWNT nucleation, growth, and healing phenomena on transition-metal catalysts using quantum mechanical molecular dynamics (QM/MD) methods. In particular, we have validated each stage of the SWNT condensation mechanism using a self-consistent-charge density-functional tight-binding (SCC-DFTB) methodology. With respect to the nucleation of a SWNT cap-precursor (stage 1), we have shown that the presence of a transition-metal carbide particle is not a necessary prerequisite for SWNT nucleation, contrary to conventional experimental presumptions. The formation and coalescence of polyyne chains on the metal surface occur first, followed by the formation of the SWNT cap-precursor, "ring condensation", and the creation of an sp(2)-hybridized carbon structure. In our simulations, the nucleation process takes approximately 400 ps. This first step occurs over a much longer time scale than the second stage of SWNT condensation (approximately 50 ps). We therefore observe SWNT nucleation to be akin to the rate-limiting step of the SWNT formation process. In addition to the QM/MD simulation of various stages of SWNT nucleation, growth, and healing processes, we have determined the effects of temperature, catalyst composition, and catalyst size on the kinetics and mechanism of SWNT growth. With respect to temperature dependence, we observe a "sweet-spot" with respect to the efficiency of SWNT growth. In addition, Ni-catalyzed SWNT growth is observed to be 70-100% faster compared to Fe-catalyzed SWNT growth, depending on the catalyst particle size. We also observe a noticeable increase in SWNT growth rates using smaller catalyst particles. Finally, we review our recent QM/MD investigation of SWNT healing. In particular, we recount mechanisms by which adatom defects, monovacancy defects, and a "5-7 defect" are removed from a nascent SWNT. The effectiveness of these healing mechanisms depends on the rate at which carbon moieties are incorporated into the growing SWNT. Explicitly, we observe that healing is promoted using a slower carbon supply rate. From this rudimentary control of SWNT healing, we propose a route towards chirality-controlled SWNT growth.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xzz完成签到,获得积分10
13秒前
Ash完成签到 ,获得积分10
15秒前
淡如水完成签到 ,获得积分10
20秒前
Lexi完成签到 ,获得积分10
24秒前
李y梅子完成签到 ,获得积分10
51秒前
hello2001完成签到 ,获得积分10
58秒前
1250241652完成签到,获得积分10
1分钟前
iamzhangly30hyit完成签到 ,获得积分10
1分钟前
panjunlu完成签到,获得积分10
1分钟前
宗气完成签到,获得积分10
1分钟前
59完成签到 ,获得积分10
1分钟前
1分钟前
neil_match完成签到,获得积分10
1分钟前
lion_wei发布了新的文献求助10
1分钟前
HSJ完成签到 ,获得积分10
1分钟前
美丽的问安完成签到 ,获得积分10
1分钟前
孜然味的拜拜肉完成签到,获得积分10
2分钟前
风信子完成签到 ,获得积分10
2分钟前
坚强的嚣完成签到 ,获得积分10
2分钟前
麻麻花完成签到 ,获得积分10
2分钟前
包谷冬完成签到 ,获得积分10
2分钟前
zzr完成签到 ,获得积分10
2分钟前
李健春完成签到 ,获得积分10
2分钟前
美满西装完成签到 ,获得积分10
2分钟前
阿帕奇完成签到 ,获得积分10
2分钟前
退伍的三毛完成签到 ,获得积分10
2分钟前
yang发布了新的文献求助10
2分钟前
一一精彩完成签到 ,获得积分10
2分钟前
yang完成签到,获得积分20
3分钟前
致远完成签到 ,获得积分10
3分钟前
猪一号完成签到 ,获得积分10
3分钟前
xkhxh完成签到 ,获得积分10
3分钟前
楚襄谷发布了新的文献求助200
3分钟前
愉快的老三完成签到,获得积分10
3分钟前
张困困完成签到 ,获得积分10
3分钟前
xqa完成签到 ,获得积分10
3分钟前
00完成签到 ,获得积分10
3分钟前
ttt完成签到 ,获得积分10
3分钟前
XQL完成签到 ,获得积分10
4分钟前
raoxray完成签到 ,获得积分10
4分钟前
高分求助中
Manual of Clinical Microbiology, 4 Volume Set (ASM Books) 13th Edition 1000
Teaching Social and Emotional Learning in Physical Education 900
The three stars each : the Astrolabes and related texts 550
Boris Pesce - Gli impiegati della Fiat dal 1955 al 1999 un percorso nella memoria 500
[Lambert-Eaton syndrome without calcium channel autoantibodies] 500
少脉山油柑叶的化学成分研究 500
Recherches Ethnographiques sue les Yao dans la Chine du Sud 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2401333
求助须知:如何正确求助?哪些是违规求助? 2101071
关于积分的说明 5297112
捐赠科研通 1828750
什么是DOI,文献DOI怎么找? 911475
版权声明 560333
科研通“疑难数据库(出版商)”最低求助积分说明 487273