纳米晶材料
合金
材料科学
电解
腐蚀
催化作用
析氧
冶金
循环伏安法
涂层
极化(电化学)
电镀
电解质
化学工程
无机化学
电极
电化学
纳米技术
化学
图层(电子)
物理化学
工程类
生物化学
作者
Yathish Ullal,A. Chitharanjan Hegde
标识
DOI:10.1016/j.ijhydene.2014.05.016
摘要
Abstract This paper presents the electrodeposition protocol for development of a stable, inexpensive and efficient electrode material for water splitting reaction. Nanocrystalline Ni–Fe alloy coatings were deposited on copper electrode from acidic bath, at different cathode current densities (c.d). Coatings were tested for their electro-catalytic behaviours, namely for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in 6 M KOH by cyclic voltammetry and chrono-potentiometry techniques. Experimental results demonstrated that these coatings can be used as potential material for water electrolysis. The corrosion stability of these coatings has also been tested in their working conditions (6 M KOH) by DC polarization method. The deposition conditions of Ni–Fe alloy were optimized for peak performance for both electro-catalytic reactions and corrosion stability. Ni–Fe alloy coatings deposited towards low and high c.d limits were found to be the better materials for OER and HER, respectively from same electrolytic solution. Further, Ni–Fe coating deposited at 6.0 Ad m−2 was found to be the most corrosion resistant. The structure-property relationship of electrodeposited coatings has been discussed by exploring PXRD, EDX and FESEM study.
科研通智能强力驱动
Strongly Powered by AbleSci AI