Machine learning-enabled prediction of wind turbine energy yield losses due to general blade leading edge erosion

腐蚀 涡轮机 海上风力发电 风力发电 前沿 环境科学 海洋工程 涡轮叶片 可再生能源 表面粗糙度 GSM演进的增强数据速率 空气动力学 计算流体力学 结构工程 工程类 气象学 地质学 机械工程 航空航天工程 材料科学 物理 复合材料 古生物学 电气工程 电信
作者
Lorenzo Cappugi,Alessio Castorrini,Aldo Bonfiglioli,Edmondo Minisci,M. Sergio Campobasso
出处
期刊:Energy Conversion and Management [Elsevier]
卷期号:245: 114567-114567 被引量:47
标识
DOI:10.1016/j.enconman.2021.114567
摘要

Blade leading edge erosion is acknowledged to significantly reduce the energy yield of wind turbines. The problem is particularly severe for offshore installations, due to faster erosion progression boosted by harsh environmental conditions. This study presents and demonstrates an experimentally validated simulation-based technology for rapidly and accurately estimating wind turbine energy yield losses due to general leading edge erosion. The technology combines the predictive accuracy of two- and three-dimensional Navier–Stokes computational fluid dynamics with the runtime reductions enabled by artificial neural networks and wind turbine engineering codes using the blade element momentum theory. The main demonstration is based on the assessment of the annual energy yield of the National Renewable Energy Laboratory 5 MW reference turbine affected by leading edge erosion damage of increasing severity, considering damages based on available laser scans and previous leading edge erosion analysis. Results also include sensitivity studies of the energy loss to the wind characteristics of the installation site. It is found that the annual energy loss varies between about 0.3 and 4%, depending on the damage severity and the site wind characteristics. The study also illustrates the necessity of resolving the geometry of eroded leading edges rather than accounting for the effects of erosion with surrogate models, since, after an initial increase of distributed surface roughness, erosion yields leading edge geometry alterations causing aerodynamic losses exceeding those due to the loss of boundary layer laminarity consequent to roughness-induced transition. The presented technology enables estimating in a few minutes the amount of energy lost to erosion for many-turbine wind farms, and offers a key tool for predictive maintenance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
八月宁静完成签到,获得积分10
1秒前
百羊发布了新的文献求助10
1秒前
搜集达人应助文静萤采纳,获得10
3秒前
小于完成签到,获得积分20
3秒前
wangym868完成签到,获得积分10
4秒前
4秒前
小易发布了新的文献求助10
5秒前
Lillian_7发布了新的文献求助10
6秒前
tjuer发布了新的文献求助10
7秒前
科研通AI2S应助隐形的baby采纳,获得10
7秒前
丘比特应助猫蒲采纳,获得10
7秒前
关关完成签到 ,获得积分10
9秒前
9秒前
9秒前
10秒前
彪壮的三问完成签到,获得积分10
12秒前
13秒前
gjx完成签到,获得积分10
13秒前
15秒前
GHX完成签到 ,获得积分10
15秒前
李杰发布了新的文献求助10
16秒前
16秒前
Du完成签到,获得积分10
17秒前
朱泳钦完成签到,获得积分10
17秒前
17秒前
小蘑菇发布了新的文献求助10
17秒前
可爱的函函应助天真醉波采纳,获得10
18秒前
隐形的baby完成签到,获得积分10
19秒前
20秒前
话藏心发布了新的文献求助10
22秒前
正直的雅绿完成签到,获得积分10
22秒前
科研通AI6应助safari采纳,获得30
24秒前
24秒前
平常的老头完成签到,获得积分10
25秒前
ding应助Du采纳,获得10
25秒前
朱泳钦发布了新的文献求助10
26秒前
27秒前
量子星尘发布了新的文献求助10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5536873
求助须知:如何正确求助?哪些是违规求助? 4624540
关于积分的说明 14592255
捐赠科研通 4564957
什么是DOI,文献DOI怎么找? 2502101
邀请新用户注册赠送积分活动 1480843
关于科研通互助平台的介绍 1452073