Machine learning-enabled prediction of wind turbine energy yield losses due to general blade leading edge erosion

腐蚀 涡轮机 海上风力发电 风力发电 前沿 环境科学 海洋工程 涡轮叶片 可再生能源 表面粗糙度 GSM演进的增强数据速率 空气动力学 计算流体力学 结构工程 工程类 气象学 地质学 机械工程 航空航天工程 材料科学 物理 复合材料 古生物学 电气工程 电信
作者
Lorenzo Cappugi,Alessio Castorrini,Aldo Bonfiglioli,Edmondo Minisci,M. Sergio Campobasso
出处
期刊:Energy Conversion and Management [Elsevier BV]
卷期号:245: 114567-114567 被引量:47
标识
DOI:10.1016/j.enconman.2021.114567
摘要

Blade leading edge erosion is acknowledged to significantly reduce the energy yield of wind turbines. The problem is particularly severe for offshore installations, due to faster erosion progression boosted by harsh environmental conditions. This study presents and demonstrates an experimentally validated simulation-based technology for rapidly and accurately estimating wind turbine energy yield losses due to general leading edge erosion. The technology combines the predictive accuracy of two- and three-dimensional Navier–Stokes computational fluid dynamics with the runtime reductions enabled by artificial neural networks and wind turbine engineering codes using the blade element momentum theory. The main demonstration is based on the assessment of the annual energy yield of the National Renewable Energy Laboratory 5 MW reference turbine affected by leading edge erosion damage of increasing severity, considering damages based on available laser scans and previous leading edge erosion analysis. Results also include sensitivity studies of the energy loss to the wind characteristics of the installation site. It is found that the annual energy loss varies between about 0.3 and 4%, depending on the damage severity and the site wind characteristics. The study also illustrates the necessity of resolving the geometry of eroded leading edges rather than accounting for the effects of erosion with surrogate models, since, after an initial increase of distributed surface roughness, erosion yields leading edge geometry alterations causing aerodynamic losses exceeding those due to the loss of boundary layer laminarity consequent to roughness-induced transition. The presented technology enables estimating in a few minutes the amount of energy lost to erosion for many-turbine wind farms, and offers a key tool for predictive maintenance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
changge发布了新的文献求助10
2秒前
自由宛筠完成签到 ,获得积分20
2秒前
光亮千易完成签到,获得积分10
2秒前
香菜卷煎饼完成签到,获得积分10
3秒前
3秒前
3秒前
berrycute发布了新的文献求助10
4秒前
ekswai发布了新的文献求助10
6秒前
Xx完成签到,获得积分10
8秒前
搜集达人应助changge采纳,获得10
9秒前
dxh发布了新的文献求助10
9秒前
wxh发布了新的文献求助10
9秒前
blangel完成签到,获得积分10
10秒前
10秒前
xinyue946983完成签到,获得积分10
11秒前
12秒前
12秒前
16秒前
周立成完成签到,获得积分10
16秒前
机灵浩天完成签到,获得积分20
16秒前
沧笙踏歌发布了新的文献求助10
16秒前
17秒前
喜悦的小霜关注了科研通微信公众号
18秒前
18秒前
19秒前
烟花应助Sink采纳,获得10
19秒前
汉堡包应助wuchang采纳,获得10
20秒前
20秒前
量子星尘发布了新的文献求助10
21秒前
好好学习发布了新的文献求助10
22秒前
简单冰岚完成签到,获得积分10
23秒前
小雨快跑发布了新的文献求助10
23秒前
小二郎应助优秀的枕头采纳,获得10
25秒前
25秒前
马登完成签到,获得积分10
25秒前
26秒前
科研通AI2S应助可靠的冬菱采纳,获得10
26秒前
田様应助流光采纳,获得10
26秒前
kimoto完成签到 ,获得积分10
27秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956566
求助须知:如何正确求助?哪些是违规求助? 3502673
关于积分的说明 11109597
捐赠科研通 3233488
什么是DOI,文献DOI怎么找? 1787408
邀请新用户注册赠送积分活动 870674
科研通“疑难数据库(出版商)”最低求助积分说明 802143