Directional design and synthesis of high-yield hollow Fe-MFI zeolite encapsulating ultra-small Fe2O3 nanoparticles by using mother liquid

沸石 溶解 化学工程 材料科学 再结晶(地质) 纳米颗粒 催化作用 产量(工程) 硅酸盐 纳米技术 化学 有机化学 复合材料 古生物学 工程类 生物
作者
Yi Zhai,Fumin Wang,Xubin Zhang,Guojun Lv,Yuzhou Wu,Tao Jiang,Qing Zhang,Mengyue Li,Mengyao Li,Yongkui Liu
出处
期刊:Nano Research [Springer Science+Business Media]
卷期号:14 (11): 4304-4313 被引量:23
标识
DOI:10.1007/s12274-021-3747-7
摘要

How to directionally design the hollow zeolite via a green route is of great significance. Here, we successfully synthesized the hollow Fe-silicate-1 encapsulated ultra-small Fe2O3 nanoparticles (2.5 nm) with higher yield (85.2%) by mother liquid than traditional dissolution-recrystallization for the first time, which was achieved by precisely regulating the number and distribution of defects in zeolite and cleverly utilizing the TPAOH and nuclei in mother liquor. The effects of synthetic temperature, synthetic period and addition amount of parent zeolite on the formation of hollow zeolite have been investigated and the effect of synthetic conditions on the defects in parent zeolite has been also firstly quantified. The corresponding formation mechanism has been proposed. The abundant inner defects provided by the zeolite synthesized at 130 °C for 1 day and large amount of TPAOH remaining in mother liquid are conducive to the formation of hollow zeolite. Meanwhile, both parent zeolite and nuclei (4-, 5-member rings and structure units) in mother liquid obtained at 130 °C play the crucial roles in enhancing the zeolite yield. Notably, Fe2O3 nanoparticles could decompose into small fragments by the interaction with nuclei in mother liquid. Partial ultra-small Fe2O3 nanoparticles would be encapsulated in cavity and the rest could be inserted in the zeolite framework, which is significantly different from the conventional dissolution-recrystallization mechanism. The obtained encapsulated catalyst shows the superior catalytic performance and stability in phenol and tetracycline degradation reactions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
沙脑完成签到 ,获得积分10
刚刚
ww完成签到,获得积分10
1秒前
轻轻的吻完成签到 ,获得积分10
2秒前
阿Q完成签到,获得积分10
4秒前
Spencer发布了新的文献求助30
4秒前
5秒前
斑马还没睡完成签到,获得积分10
7秒前
搜集达人应助WANGJD采纳,获得10
8秒前
alexyl发布了新的文献求助10
10秒前
霸气薯片发布了新的文献求助10
10秒前
DrQin完成签到,获得积分10
11秒前
张子贤发布了新的文献求助10
13秒前
17秒前
WANGJD发布了新的文献求助10
22秒前
嘉1612完成签到,获得积分10
22秒前
xiejuan完成签到,获得积分10
22秒前
mia完成签到,获得积分10
25秒前
25秒前
linkman发布了新的文献求助10
26秒前
27秒前
搜集达人应助jungle采纳,获得10
27秒前
乔垣结衣应助Katyusha采纳,获得10
27秒前
霸气薯片完成签到,获得积分10
28秒前
30秒前
zhubin完成签到 ,获得积分10
30秒前
roclie发布了新的文献求助10
31秒前
31秒前
32秒前
YIXIARUI发布了新的文献求助10
33秒前
Spencer完成签到 ,获得积分10
33秒前
大海123发布了新的文献求助10
35秒前
李健的小迷弟应助MOMOMOMO采纳,获得10
36秒前
150发布了新的文献求助10
36秒前
36秒前
Xiaoshen发布了新的文献求助10
38秒前
小小悟空完成签到,获得积分10
38秒前
40秒前
jungle发布了新的文献求助10
42秒前
43秒前
科研通AI5应助大海123采纳,获得10
43秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Linear and Nonlinear Functional Analysis with Applications, Second Edition 1200
Stereoelectronic Effects 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 860
Acylated delphinidin glucosides and flavonols from Clitoria ternatea 800
Nanosuspensions 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4193087
求助须知:如何正确求助?哪些是违规求助? 3728907
关于积分的说明 11744548
捐赠科研通 3404384
什么是DOI,文献DOI怎么找? 1867783
邀请新用户注册赠送积分活动 924151
科研通“疑难数据库(出版商)”最低求助积分说明 835199