Joint Optimization Framework for Minimization of Device Energy Consumption in Transmission Rate Constrained UAV-Assisted IoT Network

计算机科学 马尔可夫决策过程 能源消耗 强化学习 数学优化 弹道 基站 最优化问题 Lyapunov优化 实时计算 轨迹优化 分布式计算 马尔可夫过程 最优控制 计算机网络 算法 工程类 电气工程 Lyapunov重新设计 李雅普诺夫指数 统计 物理 数学 天文 人工智能 混乱的
作者
Abhishek Mondal,Deepak Mishra,Ganesh Prasad,Ashraf Hossain
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:9 (12): 9591-9607 被引量:30
标识
DOI:10.1109/jiot.2021.3128883
摘要

Due to their high maneuverability and flexible deployment, unmanned aerial vehicles (UAVs) could be an alternative option for a scenario where Internet of Things (IoT) devices consume high energy to achieve the required data rate when they are far away from the terrestrial base station (BS). Therefore, this article has proposed an energy-efficient UAV-assisted IoT network where a low-altitude quad-rotor UAV provides mobile data collection service from static IoT devices. We develop a novel optimization framework that minimizes the total energy consumption of all devices by jointly optimizing the UAV's trajectory, devices association, and respectively, transmit power allocation at every time slot while ensuring that every device should achieve a given data rate constraint. As this joint optimization problem is nonconvex and combinatorial, we adopt a reinforcement learning (RL)-based solution methodology that effectively decouples it into three individual optimization subproblems. The formulated optimization problem has transformed into a Markov decision process (MDP) where the UAV learns its trajectory according to its current state and corresponding action for maximizing the generated reward under the current policy. Finally, we conceive state–action–reward–state–action, a low complexity iterative algorithm for updating the current policy of UAV, that achieves an excellent computational complexity-optimality tradeoff. Numerical results validate the analysis and provide various insights on optimal UAV trajectory. The proposed methodology reduces the total energy consumption of all devices by 6.91%, 8.48%, and 9.94% in 80, 100, and 120 available time slots of UAV, respectively, compared to the particle swarm optimization (PSO) algorithm.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
西柚完成签到 ,获得积分10
7秒前
图雄争霸完成签到 ,获得积分10
8秒前
大浪淘沙完成签到 ,获得积分10
14秒前
活力小蚂蚁完成签到 ,获得积分10
18秒前
25秒前
邱海华发布了新的文献求助10
29秒前
打打应助嘟嘟图图采纳,获得10
30秒前
31秒前
慕青应助516165165采纳,获得10
32秒前
云淡风清完成签到 ,获得积分10
39秒前
40秒前
40秒前
40秒前
zz完成签到 ,获得积分10
41秒前
afuse5完成签到 ,获得积分10
43秒前
516165165发布了新的文献求助10
44秒前
彼岸花开发布了新的文献求助10
46秒前
嘟嘟图图发布了新的文献求助10
46秒前
清醒完成签到,获得积分10
50秒前
本草石之寒温完成签到 ,获得积分10
51秒前
H0neYvia完成签到 ,获得积分10
51秒前
帅气的高跟鞋完成签到 ,获得积分10
55秒前
领导范儿应助赵振辉采纳,获得10
55秒前
1分钟前
zhou完成签到,获得积分10
1分钟前
1分钟前
科研通AI6.1应助安安采纳,获得10
1分钟前
赵振辉发布了新的文献求助10
1分钟前
科研通AI6.2应助彼岸花开采纳,获得10
1分钟前
1分钟前
充电宝应助穿纸采纳,获得10
1分钟前
CipherSage应助516165165采纳,获得10
1分钟前
1分钟前
我是老大应助船夫采纳,获得10
1分钟前
YOLO完成签到,获得积分10
1分钟前
眭超阳完成签到 ,获得积分10
1分钟前
先字母完成签到,获得积分10
1分钟前
一颗困困豆耶完成签到,获得积分10
1分钟前
1分钟前
1分钟前
高分求助中
Operational Bulk Evaporation Duct Model for MORIAH Version 1.2 1200
Yangtze Reminiscences. Some Notes And Recollections Of Service With The China Navigation Company Ltd., 1925-1939 800
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Industrial Organic Chemistry, 5th Edition 400
Multiple Regression and Beyond An Introduction to Multiple Regression and Structural Equation Modeling 4th Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5847672
求助须知:如何正确求助?哪些是违规求助? 6228749
关于积分的说明 15620815
捐赠科研通 4964363
什么是DOI,文献DOI怎么找? 2676597
邀请新用户注册赠送积分活动 1621086
关于科研通互助平台的介绍 1577065