Joint Optimization Framework for Minimization of Device Energy Consumption in Transmission Rate Constrained UAV-Assisted IoT Network

计算机科学 马尔可夫决策过程 能源消耗 强化学习 数学优化 弹道 基站 最优化问题 Lyapunov优化 实时计算 轨迹优化 分布式计算 马尔可夫过程 最优控制 计算机网络 算法 工程类 李雅普诺夫指数 电气工程 混乱的 天文 人工智能 物理 统计 Lyapunov重新设计 数学
作者
Abhishek Mondal,Deepak Mishra,Ganesh Prasad,Ashraf Hossain
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:9 (12): 9591-9607 被引量:30
标识
DOI:10.1109/jiot.2021.3128883
摘要

Due to their high maneuverability and flexible deployment, unmanned aerial vehicles (UAVs) could be an alternative option for a scenario where Internet of Things (IoT) devices consume high energy to achieve the required data rate when they are far away from the terrestrial base station (BS). Therefore, this article has proposed an energy-efficient UAV-assisted IoT network where a low-altitude quad-rotor UAV provides mobile data collection service from static IoT devices. We develop a novel optimization framework that minimizes the total energy consumption of all devices by jointly optimizing the UAV's trajectory, devices association, and respectively, transmit power allocation at every time slot while ensuring that every device should achieve a given data rate constraint. As this joint optimization problem is nonconvex and combinatorial, we adopt a reinforcement learning (RL)-based solution methodology that effectively decouples it into three individual optimization subproblems. The formulated optimization problem has transformed into a Markov decision process (MDP) where the UAV learns its trajectory according to its current state and corresponding action for maximizing the generated reward under the current policy. Finally, we conceive state–action–reward–state–action, a low complexity iterative algorithm for updating the current policy of UAV, that achieves an excellent computational complexity-optimality tradeoff. Numerical results validate the analysis and provide various insights on optimal UAV trajectory. The proposed methodology reduces the total energy consumption of all devices by 6.91%, 8.48%, and 9.94% in 80, 100, and 120 available time slots of UAV, respectively, compared to the particle swarm optimization (PSO) algorithm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
TTTHANKS完成签到 ,获得积分10
1秒前
jenningseastera应助热情蜗牛采纳,获得10
1秒前
jenningseastera应助热情蜗牛采纳,获得10
1秒前
一一应助热情蜗牛采纳,获得10
1秒前
直率小土豆完成签到,获得积分20
1秒前
冷艳玉米完成签到,获得积分10
1秒前
4秒前
longyu915发布了新的文献求助30
4秒前
CipherSage应助尹尹尹采纳,获得10
4秒前
杪春完成签到 ,获得积分10
4秒前
pian完成签到,获得积分10
5秒前
固态完成签到,获得积分10
5秒前
Crystal完成签到,获得积分10
6秒前
充电宝应助经海亦采纳,获得10
6秒前
hanzhipad给LSY28的求助进行了留言
6秒前
打打应助和尘同光采纳,获得10
7秒前
7秒前
共享精神应助Estrella采纳,获得100
8秒前
9秒前
打打应助杨向成采纳,获得10
9秒前
传奇3应助罐头采纳,获得10
9秒前
秋秋很困完成签到,获得积分10
9秒前
9秒前
科研通AI5应助庄周采纳,获得10
10秒前
lqiqivv完成签到,获得积分10
10秒前
11秒前
天天快乐应助葳蕤苍生采纳,获得10
11秒前
13秒前
Phil发布了新的文献求助10
13秒前
14秒前
Non0发布了新的文献求助10
14秒前
Cherish应助Gentle采纳,获得10
14秒前
14秒前
lqiqivv发布了新的文献求助10
14秒前
ding应助lty001采纳,获得10
15秒前
凝聚态阿隅完成签到,获得积分10
15秒前
naturehome发布了新的文献求助10
16秒前
17秒前
17秒前
19秒前
高分求助中
Mass producing individuality 600
非光滑分析与控制理论 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
TM 5-855-1(Fundamentals of protective design for conventional weapons) 200
Between east and west transposition of cultural systems and military technology of fortified landscapes 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3826219
求助须知:如何正确求助?哪些是违规求助? 3368652
关于积分的说明 10451479
捐赠科研通 3087997
什么是DOI,文献DOI怎么找? 1698916
邀请新用户注册赠送积分活动 817190
科研通“疑难数据库(出版商)”最低求助积分说明 770065