材料科学
石墨烯
X射线光电子能谱
电化学
纳米颗粒
钠离子电池
化学工程
阴极
复合数
退火(玻璃)
离子
快离子导体
电导率
纳米技术
分析化学(期刊)
电极
电解质
复合材料
法拉第效率
物理化学
化学
工程类
物理
量子力学
色谱法
作者
Jinzhi Sheng,Hang Zang,Chunjuan Tang,Qinyou An,Qiulong Wei,Guobin Zhang,Lineng Chen,Peng Chen,Liqiang Mai
出处
期刊:Nano Energy
[Elsevier BV]
日期:2016-04-27
卷期号:24: 130-138
被引量:63
标识
DOI:10.1016/j.nanoen.2016.04.021
摘要
Na+ superionic conductor (NASICON) type Fe2(MoO4)3 with capacious ion diffusion tunnels and a flat discharge plateau, is a promising cathode material for sodium ion batteries. However, the sluggish electrochemical kinetics limits its further development due to the poor electron conductivity and long Na+ diffusion path. In this work, a graphene wrapped Fe2(MoO4)3 nanoparticle composite was synthesized via a micro-emulsion method followed by annealing. The composite exhibits ultra-high rate capability (64.1 mA h g−1 at 100 C, better than all the reported works) and good high-rate cycling stability (76% capacity retention after 100 cycles at 10 C). The enhanced electrochemical performances are attributed to the unique composite structure with shortened ion diffusion distance and high electron conductivity. Furthermore, the Na+ insertion/extraction mechanism of the composite is systematically investigated, based on in-situ X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). Our work demonstrates that the graphene wrapped Fe2(MoO4)3 nanoparticle composite has great potential for high-rate sodium ion batteries.
科研通智能强力驱动
Strongly Powered by AbleSci AI