Quantifying and leveraging predictive uncertainty for medical image assessment

人工智能 计算机科学 概率逻辑 背景(考古学) 一般化 机器学习 噪音(视频) 自举(财务) 医学影像学 射线照相术 对比度(视觉) 模式识别(心理学) 图像(数学) 数学 放射科 医学 计量经济学 数学分析 古生物学 生物
作者
Florin C. Ghesu,Bogdan Georgescu,Awais Mansoor,Youngjin Yoo,Eli Gibson,R. S. Vishwanath,Abishek Balachandran,James M. Balter,Yue Cao,Ramandeep Singh,Subba R. Digumarthy,Mannudeep K. Kalra,Saša Grbić,Dorin Comaniciu
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:68: 101855-101855 被引量:45
标识
DOI:10.1016/j.media.2020.101855
摘要

The interpretation of medical images is a challenging task, often complicated by the presence of artifacts, occlusions, limited contrast and more. Most notable is the case of chest radiography, where there is a high inter-rater variability in the detection and classification of abnormalities. This is largely due to inconclusive evidence in the data or subjective definitions of disease appearance. An additional example is the classification of anatomical views based on 2D Ultrasound images. Often, the anatomical context captured in a frame is not sufficient to recognize the underlying anatomy. Current machine learning solutions for these problems are typically limited to providing probabilistic predictions, relying on the capacity of underlying models to adapt to limited information and the high degree of label noise. In practice, however, this leads to overconfident systems with poor generalization on unseen data. To account for this, we propose a system that learns not only the probabilistic estimate for classification, but also an explicit uncertainty measure which captures the confidence of the system in the predicted output. We argue that this approach is essential to account for the inherent ambiguity characteristic of medical images from different radiologic exams including computed radiography, ultrasonography and magnetic resonance imaging. In our experiments we demonstrate that sample rejection based on the predicted uncertainty can significantly improve the ROC-AUC for various tasks, e.g., by 8% to 0.91 with an expected rejection rate of under 25% for the classification of different abnormalities in chest radiographs. In addition, we show that using uncertainty-driven bootstrapping to filter the training data, one can achieve a significant increase in robustness and accuracy. Finally, we present a multi-reader study showing that the predictive uncertainty is indicative of reader errors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
爆米花应助拾光采纳,获得10
1秒前
852应助yliaoyou采纳,获得10
1秒前
汉堡包应助fzzf采纳,获得10
1秒前
成就迎梅发布了新的文献求助10
1秒前
南宫誉发布了新的文献求助10
1秒前
2秒前
2秒前
小马甲应助小李攻攻采纳,获得10
2秒前
3秒前
3秒前
鱼女士完成签到,获得积分10
4秒前
4秒前
5秒前
5秒前
星星完成签到,获得积分10
5秒前
6秒前
传奇3应助OO圈圈采纳,获得10
6秒前
领导范儿应助夏姬宁静采纳,获得10
6秒前
柔弱毒娘完成签到,获得积分10
7秒前
粥粥应助坏坏的快乐采纳,获得10
7秒前
耍酷花卷完成签到,获得积分10
7秒前
QQ发布了新的文献求助10
7秒前
今后应助越幸运采纳,获得10
7秒前
8秒前
顺其自然_666888完成签到 ,获得积分10
8秒前
8秒前
8秒前
fanfanzzz完成签到,获得积分10
8秒前
那个谁谁完成签到,获得积分10
8秒前
研友_Raven发布了新的文献求助10
8秒前
空白幻想丶完成签到,获得积分10
9秒前
magae完成签到,获得积分10
10秒前
11秒前
sdd完成签到,获得积分10
11秒前
orixero应助yu采纳,获得10
12秒前
SciGPT应助柳沙鸣采纳,获得10
12秒前
机器猫发布了新的文献求助10
12秒前
13秒前
13秒前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 500
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
Towards a $2B optical metasurfaces opportunity by 2029: a cornerstone for augmented reality, an incremental innovation for imaging (YINTR24441) 500
Materials for Green Hydrogen Production 2026-2036: Technologies, Players, Forecasts 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4057254
求助须知:如何正确求助?哪些是违规求助? 3595388
关于积分的说明 11422785
捐赠科研通 3320902
什么是DOI,文献DOI怎么找? 1826147
邀请新用户注册赠送积分活动 896954
科研通“疑难数据库(出版商)”最低求助积分说明 818202