Robust random forest based non-fullerene organic solar cells efficiency prediction

富勒烯 有机太阳能电池 随机森林 材料科学 带隙 化学物理 光电子学 计算机科学 纳米技术 化学 人工智能 复合材料 有机化学 聚合物
作者
Min‐Hsuan Lee
出处
期刊:Organic Electronics [Elsevier BV]
卷期号:76: 105465-105465 被引量:61
标识
DOI:10.1016/j.orgel.2019.105465
摘要

Non-fullerene materials have attracted attention as high-performance molecular acceptors in organic solar cells (OSCs). A proper understanding of the energy level alignment between donors and non-fullerene acceptors is crucial for photoactive materials selection in designing high-performance non-fullerene OSCs. However, the quantitative assessment for the proper selection of donors and non-fullerene acceptors is still rarely studied, which is seen as time-consuming and complicated tasks. In this study, the optimized Random Forest model based on the electronic descriptors (e.g., highest occupied molecular orbitals levels, lowest unoccupied molecular orbitals levels, and band gap) provides the high predictive power, reaching the coefficient of determination (R2) of 0.85 and 0.80 for the training set and testing set, respectively. The use of machine learning approach benefits the development of non-fullerene OSCs in two ways: (1) it helps to extract complex correlation between various descriptors and device performance, and (2) it indicates that the band gap of acceptors is the more critical feature for improving the efficiency of non-fullerene OSCs. The machine-learning model for predicting the efficiency of non-fullerene OSCs (macroscopic performance) from frontier molecular orbital energy levels of the organic materials (microscopic properties) is developed, as an important guide to design the heterojunction blends and accelerate the research for non-fullerene OSCs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健应助姜一采纳,获得10
1秒前
易欣乐慰完成签到,获得积分0
4秒前
打我呀完成签到,获得积分20
6秒前
6秒前
丘比特应助清秀的寄柔采纳,获得10
12秒前
12秒前
shlw发布了新的文献求助10
12秒前
13秒前
15秒前
17秒前
Rec发布了新的文献求助10
18秒前
zz发布了新的文献求助10
20秒前
NexusExplorer应助科研通管家采纳,获得10
21秒前
思源应助科研通管家采纳,获得10
21秒前
隐形曼青应助科研通管家采纳,获得10
21秒前
研友_VZG7GZ应助科研通管家采纳,获得10
21秒前
传奇3应助科研通管家采纳,获得10
21秒前
SciGPT应助科研通管家采纳,获得10
21秒前
爆米花应助科研通管家采纳,获得10
21秒前
脑洞疼应助科研通管家采纳,获得10
21秒前
22秒前
22秒前
乐乐应助科研通管家采纳,获得10
22秒前
22秒前
Rec完成签到 ,获得积分10
23秒前
雷仪清完成签到 ,获得积分10
24秒前
24秒前
28秒前
Lucas应助zz采纳,获得10
30秒前
香蕉觅云应助孤独的帅着采纳,获得10
33秒前
笨笨芯应助燕子采纳,获得30
37秒前
39秒前
somous完成签到,获得积分10
40秒前
40秒前
42秒前
包容的剑完成签到 ,获得积分10
42秒前
44秒前
junyang发布了新的文献求助10
45秒前
kydd发布了新的文献求助10
46秒前
46秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781287
求助须知:如何正确求助?哪些是违规求助? 3326814
关于积分的说明 10228352
捐赠科研通 3041803
什么是DOI,文献DOI怎么找? 1669591
邀请新用户注册赠送积分活动 799153
科研通“疑难数据库(出版商)”最低求助积分说明 758751