亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Prediction of Potentially High PM2.5 Concentrations in Chengdu, China

环境科学 空气污染 风速 污染 污染物 微粒 气动直径 薄雾 大气科学 广义加性模型 构造盆地 中国 风向 降水 空气污染物 气候学 气象学 气溶胶 地理 统计 化学 数学 生物 生态学 有机化学 考古 古生物学 地质学
作者
Yingying Zeng,Daniel A. Jaffe,Xue Qiao,Yucong Miao,Tang Ya
出处
期刊:Aerosol and Air Quality Research [Taiwan Association for Aerosol Research]
卷期号:20 (5): 956-965 被引量:23
标识
DOI:10.4209/aaqr.2019.11.0586
摘要

Daily exposure to high ambient PM2.5 increases the mortality rate and contributes significantly to the burden of disease. In basin-situated cities with high local emissions of air pollutants, meteorological conditions play a crucial role in forming air pollution. One such city is Chengdu, which is located in the Sichuan Basin and serves as the economic, educational, and transportation hub of western China. Particulate matter with an aerodynamic diameter of < 2.5 µm (PM2.5) is the most critical pollutant in this city. Although the annually averaged PM2.5 concentrations declined from 92 to 57 µg m–3 between 2013 and 2017, the city still suffers from haze and smog, with 85 days during 2017 displaying 24-h PM2.5 concentrations > 75 µg m–3. To better understand the influence of meteorological factors on PM2.5 pollution with the goal of easily and reliably predicting the latter, we examined the relationships between the 24-h concentration and a variety of meteorological parameters in Chengdu. We found that the strongest predictors of the PM2.5 concentration were the temperature, precipitation, wind speed, and trajectory direction and distance. Furthermore, although the same-day sea-level pressure (SLP) was a weak predictor, the SLP 5 days in advance performed better. We developed generalized additive models (GAMs) that predicted the PM2.5 concentration as a function of multiple meteorological parameters. One of the GAMs developed in this study exhibited an adjusted correlation coefficient (R2) of 0.73 and captured up to 73.9% of the variance in the daily averaged PM2.5 concentrations. The model performance was improved by using the ΔSLP (i.e., mean pressure difference) for 5 days instead of the SLP, suggesting that ΔSLP5d is a good predictor of high concentration days in Chengdu. This study provides a useful tool for controlling emissions in advance to prevent heavy pollution days and issuing outdoor activity warnings to protect public health.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
18秒前
25秒前
成就的孤晴完成签到 ,获得积分10
53秒前
1分钟前
2分钟前
gszy1975完成签到,获得积分10
3分钟前
留着待会儿完成签到,获得积分10
3分钟前
小王发布了新的文献求助10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
铜锣湾新之助完成签到 ,获得积分10
5分钟前
真真完成签到 ,获得积分10
5分钟前
深情安青应助愉快的Jerry采纳,获得10
6分钟前
Li关闭了Li文献求助
7分钟前
光合作用完成签到,获得积分10
7分钟前
充电宝应助专注的月亮采纳,获得10
7分钟前
草木完成签到 ,获得积分20
7分钟前
CipherSage应助miooo采纳,获得20
7分钟前
wackykao完成签到,获得积分10
7分钟前
7分钟前
7分钟前
7分钟前
miooo发布了新的文献求助20
8分钟前
天才玩家完成签到,获得积分10
8分钟前
8分钟前
8分钟前
完美世界应助专注的月亮采纳,获得10
8分钟前
小王发布了新的文献求助10
9分钟前
vitamin完成签到 ,获得积分10
9分钟前
牧紊完成签到 ,获得积分10
9分钟前
柚子完成签到 ,获得积分10
9分钟前
科研通AI2S应助科研通管家采纳,获得10
10分钟前
大胆的小懒猪完成签到 ,获得积分10
11分钟前
大气念蕾完成签到,获得积分10
11分钟前
SCI完成签到,获得积分10
11分钟前
AMENG完成签到,获得积分10
11分钟前
Hans完成签到,获得积分10
11分钟前
12分钟前
12分钟前
小王发布了新的文献求助10
12分钟前
孙老师完成签到 ,获得积分10
12分钟前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
Images that translate 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3843231
求助须知:如何正确求助?哪些是违规求助? 3385459
关于积分的说明 10540628
捐赠科研通 3106102
什么是DOI,文献DOI怎么找? 1710866
邀请新用户注册赠送积分活动 823809
科研通“疑难数据库(出版商)”最低求助积分说明 774300