粉虱
胚状病毒
生物
载体(分子生物学)
植物病毒
番茄黄化曲叶病毒
寄主(生物学)
传输(电信)
人病毒体
病毒
半翅目
双子病毒科
计算生物学
基因组
病毒学
系统发育学
系统发育树
基因
沃尔巴克氏菌
进化生物学
遗传学
植物
工程类
电气工程
重组DNA
作者
Adi Kliot,Richard S. Johnson,Michael J. MacCoss,Svetlana Kontsedalov,Galina Lebedev,Henryk Czosnek,Michelle Heck,Murad Ghanim
出处
期刊:GigaScience
[University of Oxford]
日期:2020-11-01
卷期号:9 (11)
被引量:10
标识
DOI:10.1093/gigascience/giaa124
摘要
Many plant viruses are vector-borne and depend on arthropods for transmission between host plants. Begomoviruses, the largest, most damaging and emerging group of plant viruses, infect hundreds of plant species, and new virus species of the group are discovered each year. Begomoviruses are transmitted by members of the whitefly Bemisia tabaci species complex in a persistent-circulative manner. Tomato yellow leaf curl virus (TYLCV) is one of the most devastating begomoviruses worldwide and causes major losses in tomato crops, as well as in many agriculturally important plant species. Different B. tabaci populations vary in their virus transmission abilities; however, the causes for these variations are attributed among others to genetic differences among vector populations, as well as to differences in the bacterial symbionts housed within B. tabaci.Here, we performed discovery proteomic analyses in 9 whitefly populations from both Middle East Asia Minor I (MEAM1, formerly known as B biotype) and Mediterranean (MED, formerly known as Q biotype) species. We analysed our proteomic results on the basis of the different TYLCV transmission abilities of the various populations included in the study. The results provide the first comprehensive list of candidate insect and bacterial symbiont (mainly Rickettsia) proteins associated with virus transmission.Our data demonstrate that the proteomic signatures of better vector populations differ considerably when compared with less efficient vector populations in the 2 whitefly species tested in this study. While MEAM1 efficient vector populations have a more lenient immune system, the Q efficient vector populations have higher abundance of proteins possibly implicated in virus passage through cells. Both species show a strong link of the facultative symbiont Rickettsia to virus transmission.
科研通智能强力驱动
Strongly Powered by AbleSci AI