Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI

计算机科学 分类学(生物学) 领域(数学) 人工智能 软件部署 深度学习 机器学习 数据科学 管理科学 软件工程 工程类 数学 植物 生物 纯数学
作者
Alejandro Barredo Arrieta,Natalia Díaz-Rodríguez,Javier Del Ser,Adrien Bennetot,Siham Tabik,Alberto Barbado,Salvador García,Sergio Gil-López,Daniel Molina,Richard Benjamins,Raja Chatila,Francisco Herrera
出处
期刊:Information Fusion [Elsevier BV]
卷期号:58: 82-115 被引量:5646
标识
DOI:10.1016/j.inffus.2019.12.012
摘要

In the last few years, Artificial Intelligence (AI) has achieved a notable momentum that, if harnessed appropriately, may deliver the best of expectations over many application sectors across the field. For this to occur shortly in Machine Learning, the entire community stands in front of the barrier of explainability, an inherent problem of the latest techniques brought by sub-symbolism (e.g. ensembles or Deep Neural Networks) that were not present in the last hype of AI (namely, expert systems and rule based models). Paradigms underlying this problem fall within the so-called eXplainable AI (XAI) field, which is widely acknowledged as a crucial feature for the practical deployment of AI models. The overview presented in this article examines the existing literature and contributions already done in the field of XAI, including a prospect toward what is yet to be reached. For this purpose we summarize previous efforts made to define explainability in Machine Learning, establishing a novel definition of explainable Machine Learning that covers such prior conceptual propositions with a major focus on the audience for which the explainability is sought. Departing from this definition, we propose and discuss about a taxonomy of recent contributions related to the explainability of different Machine Learning models, including those aimed at explaining Deep Learning methods for which a second dedicated taxonomy is built and examined in detail. This critical literature analysis serves as the motivating background for a series of challenges faced by XAI, such as the interesting crossroads of data fusion and explainability. Our prospects lead toward the concept of Responsible Artificial Intelligence, namely, a methodology for the large-scale implementation of AI methods in real organizations with fairness, model explainability and accountability at its core. Our ultimate goal is to provide newcomers to the field of XAI with a thorough taxonomy that can serve as reference material in order to stimulate future research advances, but also to encourage experts and professionals from other disciplines to embrace the benefits of AI in their activity sectors, without any prior bias for its lack of interpretability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
orixero应助伶俐元芹采纳,获得10
3秒前
5秒前
6秒前
仓鼠本鼠给仓鼠本鼠的求助进行了留言
6秒前
药学小团子完成签到,获得积分10
7秒前
7秒前
orixero应助103921wjk采纳,获得10
8秒前
清秀的初翠完成签到,获得积分10
8秒前
一支笔画天下完成签到,获得积分10
8秒前
妖孽的二狗完成签到 ,获得积分10
9秒前
麻生发布了新的文献求助10
10秒前
orixero应助ethyxwat采纳,获得10
10秒前
10秒前
苹果问晴发布了新的文献求助10
10秒前
11秒前
11秒前
12秒前
Zl0911完成签到,获得积分10
13秒前
rye227应助达不溜qp采纳,获得10
14秒前
heroiheart'发布了新的文献求助10
15秒前
大气夜南完成签到,获得积分10
15秒前
嘎嘎完成签到 ,获得积分10
16秒前
16秒前
leoelizabeth完成签到 ,获得积分10
17秒前
今后应助知足的憨人*-*采纳,获得10
17秒前
103921wjk发布了新的文献求助10
22秒前
pluto应助快乐的天磊采纳,获得20
22秒前
筱诸雄完成签到,获得积分10
24秒前
如意草丛完成签到,获得积分20
25秒前
朝阳CAAS完成签到 ,获得积分10
27秒前
达不溜qp发布了新的文献求助10
28秒前
星辰大海应助qvB采纳,获得10
29秒前
鹿冶完成签到 ,获得积分10
30秒前
32秒前
NexusExplorer应助悦耳的风华采纳,获得10
32秒前
kento完成签到,获得积分0
33秒前
34秒前
35秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778170
求助须知:如何正确求助?哪些是违规求助? 3323851
关于积分的说明 10215999
捐赠科研通 3039020
什么是DOI,文献DOI怎么找? 1667747
邀请新用户注册赠送积分活动 798383
科研通“疑难数据库(出版商)”最低求助积分说明 758339