Is Automated Journalistic Writing Less Biased? An Experimental Test of Auto-Written and Human-Written News Stories

可靠性 客观性(哲学) 新闻媒体 政治 来源可信度 心理学 新闻 叙述的 广告 社会心理学 媒体研究 政治学 社会学 文学类 法学 业务 艺术 认识论 哲学
作者
Yanfang Wu
出处
期刊:Journalism Practice [Taylor & Francis]
卷期号:14 (8): 1008-1028 被引量:63
标识
DOI:10.1080/17512786.2019.1682940
摘要

By administering an online experiment, this study examined how source and journalistic domains affect the perceived objectivity, message credibility, medium credibility, bias, and overall journalistic quality of news stories among an adult sample (N = 370) recruited using Amazon's Mechanical Turk (MTurk) service. Within the framework of the cognitive authority theory, the study found auto-written news stories were rated as more objective, credible (both message and medium credibility), and less biased. However, significant difference was found between a combined assessment condition (news stories with source and author information) and a message only assessment condition (news stories without source and author information) in the ratings of objectivity and credibility, but not bias. Moreover, significant differences were found in the objectivity and credibility ratings of auto-written and human-written news stories in the journalistic domains of politics, finance and sports news stories. In auto-written news stories, sports news stories were rated more objective and credible, while financial news stories were rated as more biased. In human-written stories, financial news stories were rated as more objective and credible. However, political news stories were rated as more biased among human-written news stories, and in cases where auto-written and human-written stories were combined.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
俊秀的半雪完成签到,获得积分10
刚刚
刚刚
1秒前
我是老大应助过客采纳,获得10
1秒前
谦让芹菜完成签到,获得积分10
2秒前
科研通AI5应助司徒文青采纳,获得200
2秒前
李健的小迷弟应助yaya采纳,获得10
3秒前
3秒前
4秒前
SJ7发布了新的文献求助10
4秒前
xubcay完成签到,获得积分10
5秒前
NexusExplorer应助fuchao采纳,获得10
5秒前
秋qiu完成签到,获得积分10
5秒前
BitterGourd关注了科研通微信公众号
5秒前
wang发布了新的文献求助10
6秒前
孤独的远航完成签到,获得积分10
6秒前
桃子完成签到,获得积分10
7秒前
kenhahahaha完成签到,获得积分10
7秒前
Lucas应助爱科研的睿崽采纳,获得10
8秒前
8秒前
8秒前
Beyond095发布了新的文献求助10
9秒前
Peter_Zhu完成签到,获得积分10
10秒前
遇事不顺吃吃吃关注了科研通微信公众号
10秒前
weiwei完成签到,获得积分10
10秒前
10秒前
魏猛发布了新的文献求助10
11秒前
道心发布了新的文献求助20
11秒前
11秒前
11秒前
Owen应助枸橼酸采纳,获得10
12秒前
12秒前
13秒前
13秒前
Yana1311发布了新的文献求助100
13秒前
黎妙之发布了新的文献求助100
14秒前
碧蓝宝川完成签到,获得积分10
14秒前
leeteukxx完成签到,获得积分10
15秒前
甜甜友容发布了新的文献求助10
15秒前
15秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Treatise on Ocular Drug Delivery 200
studies in large plastic flow and fructure 200
New Syntheses with Carbon Monoxide 200
Quanterion Automated Databook NPRD-2023 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3834697
求助须知:如何正确求助?哪些是违规求助? 3377202
关于积分的说明 10497023
捐赠科研通 3096605
什么是DOI,文献DOI怎么找? 1705084
邀请新用户注册赠送积分活动 820451
科研通“疑难数据库(出版商)”最低求助积分说明 772054