亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Temporal Constraint Background-Aware Correlation Filter With Saliency Map

计算机科学 人工智能 计算机视觉 模式识别(心理学) 滤波器(信号处理) 约束(计算机辅助设计) 算法
作者
Jiawen Liao,Chun Qi,Jianzhong Cao
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:23: 3346-3361
标识
DOI:10.1109/tmm.2020.3023794
摘要

Correlation filter (CF) based trackers have recently drawn great attention in visual tracking community due to their impressive performance, and computational efficiency on benchmark datasets. However, the performance of most existing trackers using correlation filter is hampered by two aspects: i) Included background information in the selected rectangular target patch is considered as part of the target, and they are treated as important as the real target in training new filter model, it causes the filter easily drift when target shape changes dramatically. ii) Existing filters use a moving average operation with an empirical weight to update the filter model in each frame, such per frame adaptation constantly introduces new information of the target patch, but never consider the consistence of the historical information, and the newly obtained one, further increases the risk of drifting. This paper presents a new framework including saliency map, and a novel CF regression model. We reformulate the original optimization problem, and provide a closed form solution for multidimensional features which is solved efficiently using alternating direction method of multipliers (ADMM), and accelerated using Sherman-Morrison lemma, our algorithm as a new framework can be easily integrated into CF base trackers to boost their tracking performance. We perform comprehensive experiments on five benchmarks: OTB-2015, VOT2016, VOT2018, UAV123, and TempleColor-128. Results show that the proposed method performs favorably against lots of state-of-the-art methods with a speed close to real-time. Our method with deep features performs much better on all 5 datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
Jian完成签到,获得积分10
4秒前
5秒前
lmn发布了新的文献求助10
7秒前
8秒前
12秒前
gszy1975完成签到,获得积分10
33秒前
疯狂的寻琴完成签到 ,获得积分10
48秒前
思源应助科研通管家采纳,获得10
50秒前
852应助科研通管家采纳,获得10
50秒前
小马甲应助科研通管家采纳,获得10
50秒前
tuanheqi应助科研通管家采纳,获得200
50秒前
楠浔完成签到 ,获得积分10
51秒前
如意蚂蚁完成签到,获得积分10
54秒前
56秒前
科研通AI5应助小冰采纳,获得10
1分钟前
呵呵完成签到,获得积分10
1分钟前
脑洞疼应助LLL采纳,获得80
1分钟前
1分钟前
小冰发布了新的文献求助10
1分钟前
小冰发布了新的文献求助10
1分钟前
Marciu33发布了新的文献求助30
1分钟前
nenoaowu应助纯真盼芙采纳,获得30
2分钟前
田様应助Lee采纳,获得10
2分钟前
2分钟前
LLL发布了新的文献求助80
2分钟前
Hello应助科研通管家采纳,获得10
2分钟前
天天快乐应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
勤劳落雁发布了新的文献求助10
3分钟前
3分钟前
旷野完成签到 ,获得积分10
3分钟前
zqq完成签到,获得积分0
3分钟前
周周粥完成签到 ,获得积分10
3分钟前
共享精神应助khan采纳,获得10
4分钟前
4分钟前
khan发布了新的文献求助10
4分钟前
罗玲完成签到,获得积分10
4分钟前
4分钟前
CipherSage应助科研通管家采纳,获得10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Extreme ultraviolet pellicle cooling by hydrogen gas flow (Conference Presentation) 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5173416
求助须知:如何正确求助?哪些是违规求助? 4363309
关于积分的说明 13585320
捐赠科研通 4211745
什么是DOI,文献DOI怎么找? 2309966
邀请新用户注册赠送积分活动 1309078
关于科研通互助平台的介绍 1256428