Predictive modelling and optimisation of surface roughness in turning of AISI 1050 steel using polynomial regression

表面粗糙度 机械加工 多项式的 多项式回归 表面光洁度 响应面法 前角 回归分析 线性回归 GSM演进的增强数据速率 刀具 表面完整性 材料科学 机械工程 结构工程 计算机科学 数学 工程类 复合材料 机器学习 人工智能 数学分析
作者
Riad Harhout,Mohamed Gaceb,Sofiane Haddad,S. Aguib,Benattia Bloul,Adelhamid Guebli
出处
期刊:Manufacturing Technology [Jan Evangelista Purkyně University in Ústí nad Labem]
卷期号:20 (5): 591-602 被引量:5
标识
DOI:10.21062/mft.2020.094
摘要

Surface integrity plays an important role in the functional performance of mechanical components and is one of the most particular consumer requirements in machined parts. Customarily, surface roughness is considered to be the principal parameter in evaluating surface integrity and surface quality on machined parts and has a significant effect on service reliability and component durability. It is dependent on a large number of machining parameters, such as tool geometry (i.e. nose radius, edge geometry, rake angle, etc.) and cutting conditions (feed, cutting speed, depth of cut). The effects of these parameters have not however been adequately quantified. So in order to identify the optimum combination of cutting conditions corresponding to better roughness, accurate predictive models for surface roughness must, as a first step, be constructed. An investigation in this regard has been conducted to address the surface integrity optimisation and prediction issue by applying the polynomial regression method for a variety of experiments and cutting conditions. A higher correlation coefficient (R?) was obtained with a cubic regression model, which had a value of 0.9480 for Ra. The use of the response surface optimisation and composite desirability show that the optimal set of machining parameters values are (250m/min, 0.2398 mm/rev and 2.3383 mm) for cutting speed, feed and depth of cut, respectively. The optimised surface roughness parameter and productivity are Ra =2.7567 ?m and Q = 95.341*103 mm3/ min, respectively. Results show that the models developed can accurately predict the roughness on the basis of measured cutting conditions as input parameters, and can also be used to control the surface roughness by making a comparison between measured and estimated values. Furthermore, operators can benefit from the proposed models if the aim is the reverse determination of the cutting conditions corresponding to the requested roughness profile.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
微笑的li完成签到,获得积分10
刚刚
qingli发布了新的文献求助10
1秒前
1秒前
林士萍发布了新的文献求助10
2秒前
搜集达人应助机密塔采纳,获得10
2秒前
dwbh完成签到,获得积分10
2秒前
ly完成签到,获得积分10
2秒前
AllRightReserved完成签到 ,获得积分10
2秒前
ding应助独特紫夏采纳,获得10
2秒前
karyoter完成签到,获得积分10
3秒前
李健应助秋寒云采纳,获得10
4秒前
4秒前
华仔应助yyt采纳,获得10
4秒前
深情安青应助研友_nEWaD8采纳,获得10
6秒前
6秒前
小二郎应助Qq采纳,获得10
6秒前
沙lulu沙发布了新的文献求助10
7秒前
7秒前
nora应助酱酱采纳,获得30
8秒前
666发布了新的文献求助10
8秒前
易武皇发布了新的文献求助10
8秒前
香蕉觅云应助无心无添加采纳,获得10
8秒前
传奇3应助和谐幻柏采纳,获得10
8秒前
唐咩咩咩完成签到,获得积分10
9秒前
冰糖小葫芦完成签到,获得积分10
9秒前
感动世倌完成签到,获得积分10
10秒前
龚瑶发布了新的文献求助10
11秒前
熊熊完成签到,获得积分10
11秒前
隐形曼青应助易武皇采纳,获得10
13秒前
啊啊发布了新的文献求助10
13秒前
yaxianzhi完成签到,获得积分10
14秒前
14秒前
14秒前
hanjian发布了新的文献求助10
14秒前
脑洞疼应助长白山的灵芝采纳,获得10
14秒前
16秒前
晴天小雨完成签到 ,获得积分10
16秒前
脑洞疼应助爽爽子采纳,获得10
16秒前
16秒前
犹豫三问发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5070491
求助须知:如何正确求助?哪些是违规求助? 4291579
关于积分的说明 13370992
捐赠科研通 4111872
什么是DOI,文献DOI怎么找? 2251722
邀请新用户注册赠送积分活动 1256838
关于科研通互助平台的介绍 1189480