劈形算符
吸引子
拉回
指数
拉回吸引子
数学物理
物理
指数函数
类型(生物学)
数学
欧米茄
数学分析
量子力学
哲学
生物
语言学
生态学
作者
Zhijian Yang,Na Feng,Yanan Li
摘要
The paper studies the existence of the pullback attractors and robust pullback exponential attractors for a Kirchhoff-Boussinesq type equation: $ u_{tt}-\Delta u_{t}+\Delta^{2} u = div\Big\{\frac{\nabla u}{\sqrt{1+|\nabla u|^{2}}}\Big\}+\Delta g(u)+f(x,t) $. We show that when the growth exponent $ p $ of the nonlinearity $ g(u) $ is up to the critical range: $ 1\leq p\leq p^*\equiv\frac{N+2}{(N-2)^{+}} $, (ⅰ) the IBVP of the equation is well-posed, and its solution has additionally global regularity when $ t>\tau $; (ⅱ) the related dynamical process $ \{U_f(t,\tau)\} $ has a pullback attractor; (ⅲ) in particular, when $ 1\leq p< p^* $, the process $ \{U_f(t,\tau)\} $ has a family of pullback exponential attractors, which is stable with respect to the perturbation $ f\in \Sigma $ (the sign space).
科研通智能强力驱动
Strongly Powered by AbleSci AI