An Interpretable and Accurate Deep-Learning Diagnosis Framework Modeled With Fully and Semi-Supervised Reciprocal Learning

可解释性 人工智能 计算机科学 机器学习 分类器(UML) 深度学习 互惠的 分割 监督学习 上下文图像分类 半监督学习 模式识别(心理学) 人工神经网络 图像(数学) 语言学 哲学
作者
Chong Wang,Yuanhong Chen,Fengbei Liu,Michael S. Elliott,Chun Fung Kwok,Carlos A. Peña‐Solórzano,Helen Frazer,Davis J. McCarthy,Gustavo Carneiro
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (1): 392-404 被引量:16
标识
DOI:10.1109/tmi.2023.3306781
摘要

The deployment of automated deep-learning classifiers in clinical practice has the potential to streamline the diagnosis process and improve the diagnosis accuracy, but the acceptance of those classifiers relies on both their accuracy and interpretability. In general, accurate deep-learning classifiers provide little model interpretability, while interpretable models do not have competitive classification accuracy. In this paper, we introduce a new deep-learning diagnosis framework, called InterNRL, that is designed to be highly accurate and interpretable. InterNRL consists of a student-teacher framework, where the student model is an interpretable prototype-based classifier (ProtoPNet) and the teacher is an accurate global image classifier (GlobalNet). The two classifiers are mutually optimised with a novel reciprocal learning paradigm in which the student ProtoPNet learns from optimal pseudo labels produced by the teacher GlobalNet, while GlobalNet learns from ProtoPNet's classification performance and pseudo labels. This reciprocal learning paradigm enables InterNRL to be flexibly optimised under both fully- and semi-supervised learning scenarios, reaching state-of-the-art classification performance in both scenarios for the tasks of breast cancer and retinal disease diagnosis. Moreover, relying on weakly-labelled training images, InterNRL also achieves superior breast cancer localisation and brain tumour segmentation results than other competing methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
mayhem发布了新的文献求助10
1秒前
1秒前
可可发布了新的文献求助10
2秒前
俊逸的康乃馨完成签到 ,获得积分10
2秒前
3秒前
烟火橙橙发布了新的文献求助10
3秒前
feizhuliu完成签到,获得积分10
5秒前
博弈春秋发布了新的文献求助10
5秒前
wenti发布了新的文献求助10
6秒前
laoyuweng完成签到,获得积分10
6秒前
1122th发布了新的文献求助20
6秒前
麻薯麻薯发布了新的文献求助20
7秒前
NexusExplorer应助yumemakase采纳,获得10
8秒前
量子星尘发布了新的文献求助50
8秒前
YOUYOU发布了新的文献求助10
8秒前
chany完成签到,获得积分10
9秒前
xxs发布了新的文献求助10
10秒前
JamesPei应助战斗暴龙兽采纳,获得10
10秒前
mmmio应助wolly采纳,获得10
11秒前
12秒前
12秒前
希望天下0贩的0应助lcj1014采纳,获得10
13秒前
土豆发布了新的文献求助10
15秒前
15秒前
16秒前
完美世界应助kd采纳,获得10
16秒前
幸运发布了新的文献求助10
18秒前
YOUYOU完成签到,获得积分10
18秒前
852应助麻薯麻薯采纳,获得10
18秒前
橙子abcy发布了新的文献求助10
18秒前
甘乐发布了新的文献求助10
19秒前
刘汐完成签到,获得积分10
19秒前
笨笨松发布了新的文献求助10
19秒前
123发布了新的文献求助10
19秒前
22秒前
22秒前
时光完成签到,获得积分10
22秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Organic Chemistry 3000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
International socialism & Australian labour : the Left in Australia, 1919-1939 400
Bulletin de la Societe Chimique de France 400
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
Metals, Minerals, and Society 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4285022
求助须知:如何正确求助?哪些是违规求助? 3812504
关于积分的说明 11942149
捐赠科研通 3458946
什么是DOI,文献DOI怎么找? 1897057
邀请新用户注册赠送积分活动 945649
科研通“疑难数据库(出版商)”最低求助积分说明 849351